Growth Curve Models and Statistical Diagnostics
Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.
1101008888
Growth Curve Models and Statistical Diagnostics
Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.
109.99 In Stock
Growth Curve Models and Statistical Diagnostics

Growth Curve Models and Statistical Diagnostics

Growth Curve Models and Statistical Diagnostics

Growth Curve Models and Statistical Diagnostics

Paperback(Softcover reprint of the original 1st ed. 2002)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.

Product Details

ISBN-13: 9781441928641
Publisher: Springer New York
Publication date: 10/09/2011
Series: Springer Series in Statistics
Edition description: Softcover reprint of the original 1st ed. 2002
Pages: 388
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

1 Introduction.- 1.1 General Remarks.- 1.2 Statistical Diagnostics in Multivariate Analysis.- 1.3 Growth Curve Model (GCM).- 1.4 Summary.- 1.5 Preliminary Results.- 1.6 Further Readings.- 2 Generalized Least Square Estimation.- 2.1 General Remarks.- 2.2 Generalized Least Square Estimation.- 2.3 Admissible Estimate of Regression Coefficient.- 2.4 Bibliographical Notes.- 3 Maximum Likelihood Estimation.- 3.1 Maximum Likelihood Estimation.- 3.2 Rao’s Simple Covariance Structure (SCS).- 3.3 Restricted Maximum Likelihood Estimation.- 3.4 Bibliographical Notes.- 4 Discordant Outlier and Influential Observation.- 4.1 General Remarks.- 4.2 Discordant Outlier Detection in the GCM with SCS.- 4.3 Influential Observation in the GCM with SCS.- 4.4 Discordant Outlier Detection in the GCM with UC.- 4.5 Influential Observation in the GCM with UC.- 4.6 Bibliographical Notes.- 5 Likelihood-Based Local Influence.- 5.1 General Remarks.- 5.2 Local Influence Assessment in the GCM with SCS.- 5.3 Local Influence Assessment in the GCM with UC.- 5.4 Bibliographical Notes.- 6 Bayesian Influence Assessment.- 6.1 General Remarks.- 6.2 Bayesian Influence Analysis in the GCM with SCS.- 6.3 Bayesian Influence Analysis in the GCM with UC.- 6.4 Bibliographical Notes.- 7 Bayesian Local Influence.- 7.1 General Remarks.- 7.2 Bayesian Local Influence in the GCM with SCS.- 7.3 Bayesian Local Influence in the GCM with UC.- 7.4 Bibliographical Notes.- Appendix Data sets used in this book.- References.- Author Index.
From the B&N Reads Blog

Customer Reviews