Guide to Elementary Number Theory

Guide to Elementary Number Theory

by Underwood Dudley

An introductory guide to elementary number theory for advanced undergraduates and graduates.See more details below


An introductory guide to elementary number theory for advanced undergraduates and graduates.

Product Details

Mathematical Association of America
Publication date:
Dolciani Mathematical Expositions Series
Edition description:
New Edition

Table of Contents

Introduction; 1. Greatest common divisors; 2. Unique factorization; 3. Linear diophantine equations; 4. Congruences; 5. Linear congruences; 6. The Chinese Remainder Theorem; 7. Fermat's Theorem; 8. Wilson's Theorem; 9. The number of divisors of an integer; 10. The sum of the divisors of an integer; 11. Amicable numbers; 12. Perfect numbers; 13. Euler's Theorem and function; 14. Primitive roots and orders; 15. Decimals; 16. Quadratic congruences; 17. Gauss's Lemma; 18. The Quadratic Reciprocity Theorem; 19. The Jacobi symbol; 20. Pythagorean triangles; 21. x4+y4≠z4; 22. Sums of two squares; 23. Sums of three squares; 24. Sums of four squares; 25. Waring's Problem; 26. Pell's Equation; 27. Continued fractions; 28. Multigrades; 29. Carmichael numbers; 30. Sophie Germain primes; 31. The group of multiplicative functions; 32. Bounds for ∏(x); 33. The sum of the reciprocals of the primes; 34. The Riemann Hypothesis; 35. The Prime Number Theorem; 36. The abc conjecture; 37. Factorization and testing for primes; 38. Algebraic and transcendental numbers; 39. Unsolved problems; Index; About the author.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >