Hamiltonian Mechanics of Gauge Systems

Hardcover (Print)
Buy New
Buy New from BN.com
$133.99
Used and New from Other Sellers
Used and New from Other Sellers
from $98.71
Usually ships in 1-2 business days
(Save 31%)
Other sellers (Hardcover)
  • All (6) from $98.71   
  • New (3) from $118.92   
  • Used (3) from $98.71   

Overview

The principles of gauge symmetry and quantization are fundamental to modern understanding of the laws of electromagnetism, weak and strong subatomic forces and the theory of general relativity. Ideal for graduate students and researchers in theoretical and mathematical physics, this unique book provides a systematic introduction to Hamiltonian mechanics of systems with gauge symmetry. The book reveals how gauge symmetry may lead to a non-trivial geometry of the physical phase space and studies its effect on quantum dynamics by path integral methods. It also covers aspects of Hamiltonian path integral formalism in detail, along with a number of related topics such as the theory of canonical transformations on phase space supermanifolds, non-commutativity of canonical quantization and elimination of non-physical variables. The discussion is accompanied by numerous detailed examples of dynamical models with gauge symmetries, clearly illustrating the key concepts.

Read More Show Less

Editorial Reviews

From the Publisher
"It is definitely a first choice for anybody willing to learn constrained systems."
Giuseppe Nardelli, Mathematical reviews
Read More Show Less

Product Details

Meet the Author

Lev V. Prokhorov is a Leading Research Fellow at the V. A. Fock Institute of Physics at St Petersburg State University and the acting head of the Laboratory of Quantum Networks. He is known for his work in the fields of effective Lagrangians, deep inelastic scattering at small transfer momenta, grand unification theory, path integrals, infrared and collinear divergences. His current research focuses on emergence of quantum mechanics and the nature of physical space.

Sergei V. Shabanov is an Associate Professor of Mathematics and Affiliate Professor of Physics at the University of Florida, Gainesville. His research focuses on gauge theories and the path integral formalism, including the topological defects in lattice gauge theories and applications of knot solitons to effective infrared Yang-Mills theories, along with nanophotonics and plasma physics. His achievements include an Alexander von Humboldt research fellowship.

Read More Show Less

Table of Contents

1. Hamiltonian formalism; 2. Hamiltonian path integrals; 3. Dynamical systems with constraints; 4. Quantization of constrained systems; 5. Phase space in gauge theories; 6. Path integrals in gauge theories; 7. Confinement; 8. Supplementary material; Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)