Gift Guide



Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of ...

See more details below
Handbook of Probability

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac

Want a NOOK? Explore Now

NOOK Book (eBook)
$85.49 price
(Save 42%)$149.95 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.



Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability.

The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introduction, historical background, theory and applications, algorithms, and exercises. The Handbook of Probability offers coverage of:

  • Probability Space
  • Probability Measure
  • Random Variables
  • Random Vectors in Rn
  • Characteristic Function
  • Moment Generating Function
  • Gaussian Random Vectors
  • Convergence Types
  • Limit Theorems

The Handbook of Probability is an ideal resource for researchers and practitioners in numerous fields, such as mathematics, statistics, operations research, engineering, medicine, and finance, as well as a useful text for graduate students.

Read More Show Less

Editorial Reviews

From the Publisher

“On the whole, the book has two features that set it apart from similar books: the full solutions and the examples from finance. It is up to you to decide if that makes it worth your time checking it out.” (Mathematical Association of America, 1 November 2014)

Read More Show Less

Product Details

  • ISBN-13: 9781118593097
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 10/28/2013
  • Series: Wiley Handbooks in Applied Statistics
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 472
  • File size: 6 MB

Meet the Author

IONUT FLORESCU, PhD, is Research Associate Professor of Financial Engineering and Director of the Hanlon Financial Systems Lab at Stevens Institute of Technology. He has published extensively in his areas of research interest, which include stochastic volatility, stochastic partial differential equations, Monte Carlo methods, and numerical methods for stochastic processes.

CIPRIAN A. TUDOR, PhD, is Professor of Mathematics at the University of Lille 1, France. His research interests include Brownian motion, limit theorems, statistical inference for stochastic processes, and financial mathematics. He has over eighty scientific publications in various internationally recognized journals on probability theory and statistics. He serves as a referee for over a dozen journals and has spoken at more than thirty-five conferences worldwide.

Read More Show Less

Table of Contents

List of Figures xv

List of Tables xvii

Preface xix

Introduction xxi

1 Probability Space 1

1.1 Introduction/Purpose of the Chapter 1

1.2 Vignette/Historical Notes 2

1.3 Notations and Definitions 3

1.4 Theory and Applications 4

Problems 12

2 Probability Measure 15

2.1 Introduction/ Purpose of the chapter 15

2.2 Vignette/ Historical Notes 16

2.3 Theory and Applications 17

2.4 Examples 23

2.5 Monotone Convergence properties of probability 25

2.6 Conditional Probability 27

2.7 Independence of events and sigma fields 35

2.8 Borel Cantelli Lemmas 41

2.9 The Fatou lemmas 43

2.10 Kolmogorov zeroone law 44

2.11 Lebesgue measure on the unit interval (0,1] 45

Problems 48

3 Random Variables: Generalities 59

3.1 Introduction/ Purpose of the chapter 59

3.2 Vignette/Historical Notes 59

3.3 Theory and Applications 60

3.4 Independence of random variables 66

Problems 67

4 Random Variables: the discrete case 75

4.1 Introduction/Purpose of the chapter 75

4.2 Vignette/Historical Notes 76

4.3 Theory and Applications 76

4.4 Examples of discrete random variables 84

Problems 102

5 Random Variables: the continuous case 113

5.1 Introduction/purpose of the chapter 113

5.2 Vignette/Historical Notes 114

5.3 Theory and Applications 114

5.4 Moments 119

5.5 Change of variables 120

5.6 Examples 121

6 Generating Random variables 161

6.1 Introduction/Purpose of the chapter 161

6.2 Vignette/Historical Notes 162

6.3 Theory and applications 162

6.4 Generating multivariate distributions with prescribed covariance structure 188

Problems 191

7 Random vectors in Rn 193

7.1 Introduction/Purpose of the chapter 193

7.2 Vignette/Historical Notes 194

7.3 Theory and Applications 194

7.4 Distribution of sums of Random Variables. Convolutions 213

Problems 216

8 Characteristic Function 235

8.1 Introduction/Purpose of the chapter 235

8.2 Vignette/Historical Notes 235

8.3 Theory and Applications 236

8.4 The relationship between the characteristic function and the distribution 240

8.5 Examples 245

8.6 Gamma distribution 247

Problems 254

9 Momentgenerating function 259

9.1 Introduction/Purpose of the chapter 259

9.2 Vignette/ Historical Notes 260

9.3 Theory and Applications 260

Problems 272

10 Gaussian random vectors 277

10.1 Introduction/Purpose of the chapter 277

10.2 Vignette/Historical Notes 278

10.3 Theory and applications 278

Problems 300

11 Convergence Types. A.s. convergence. Lpconvergence. Convergence in probability. 313

11.1 Introduction/Purpose of the chapter 313

11.2 Vignette/Historical Notes 314

11.3 Theory and Applications: Types of Convergence 314

11.4 Relationships between types of convergence 320

Problems 333

12 Limit Theorems 345

12.1 Introduction/Purpose of the Chapter 345

12.2 Historical Notes 346


12.4 Central Limit Theorem 372

Problems 380

Appendix A: Integration Theory. General Expectations 391

A.1 Integral of measurable functions 392

A.2 General Expectations and Moments of a Random Variable 399

Appendix B: Inequalities involving Random Variables and their Expectations 403

B.1 Functions of random variables. The Transport Formula. 409

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)