Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines
Apply supervised and unsupervised machine learning algorithms using C++ libraries, such as PyTorch C++ API, Flashlight, Blaze, mlpack, and dlib using real-world examples and datasets

Free with your book: DRM-free PDF version + access to Packt's next-gen Reader*

Key Features
  • Familiarize yourself with data processing, performance measuring, and model selection using various C++ libraries
  • Implement practical machine learning and deep learning techniques to build smart models
  • Deploy machine learning models to work on mobile and embedded devices
  • Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionWritten by a seasoned software engineer with several years of industry experience, this book will teach you the basics of machine learning (ML) and show you how to use C++ libraries, along with helping you create supervised and unsupervised ML models.

You’ll gain hands-on experience in tuning and optimizing a model for various use cases, enabling you to efficiently select models and measure performance. The chapters cover techniques such as product recommendations, ensemble learning, anomaly detection, sentiment analysis, and object recognition using modern C++ libraries. You’ll also learn how to overcome production and deployment challenges on mobile platforms, and see how the ONNX model format can help you accomplish these tasks.

This edition is updated with key topics such as sentiment analysis implementation using transfer learning and transformer-based models, with tracking and visualizing ML experiments with MLflow. An additional section shows how to use Optuna for hyperparameter selection. The section on model deployment into mobile platform includes a detailed explanation of real-time object detection for Android with C++.

By the end of this C++ book, you’ll have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

*Email sign-up and proof of purchase requiredWhat you will learn

  • Employ key machine learning algorithms using various C++ libraries
  • Load and pre-process different data types to suitable C++ data structures
  • Find out how to identify the best parameters for a machine learning model
  • Use anomaly detection for filtering user data
  • Apply collaborative filtering to manage dynamic user preferences
  • Utilize C++ libraries and APIs to manage model structures and parameters
  • Implement C++ code for object detection using a modern neural network
Who this book is for

This book is for beginners looking to explore machine learning algorithms and techniques using C++. This book is also valuable for data analysts, scientists, and developers who want to implement machine learning models in production. Working knowledge of C++ is needed to make the most of this book.

1136968068
Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines
Apply supervised and unsupervised machine learning algorithms using C++ libraries, such as PyTorch C++ API, Flashlight, Blaze, mlpack, and dlib using real-world examples and datasets

Free with your book: DRM-free PDF version + access to Packt's next-gen Reader*

Key Features
  • Familiarize yourself with data processing, performance measuring, and model selection using various C++ libraries
  • Implement practical machine learning and deep learning techniques to build smart models
  • Deploy machine learning models to work on mobile and embedded devices
  • Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionWritten by a seasoned software engineer with several years of industry experience, this book will teach you the basics of machine learning (ML) and show you how to use C++ libraries, along with helping you create supervised and unsupervised ML models.

You’ll gain hands-on experience in tuning and optimizing a model for various use cases, enabling you to efficiently select models and measure performance. The chapters cover techniques such as product recommendations, ensemble learning, anomaly detection, sentiment analysis, and object recognition using modern C++ libraries. You’ll also learn how to overcome production and deployment challenges on mobile platforms, and see how the ONNX model format can help you accomplish these tasks.

This edition is updated with key topics such as sentiment analysis implementation using transfer learning and transformer-based models, with tracking and visualizing ML experiments with MLflow. An additional section shows how to use Optuna for hyperparameter selection. The section on model deployment into mobile platform includes a detailed explanation of real-time object detection for Android with C++.

By the end of this C++ book, you’ll have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

*Email sign-up and proof of purchase requiredWhat you will learn

  • Employ key machine learning algorithms using various C++ libraries
  • Load and pre-process different data types to suitable C++ data structures
  • Find out how to identify the best parameters for a machine learning model
  • Use anomaly detection for filtering user data
  • Apply collaborative filtering to manage dynamic user preferences
  • Utilize C++ libraries and APIs to manage model structures and parameters
  • Implement C++ code for object detection using a modern neural network
Who this book is for

This book is for beginners looking to explore machine learning algorithms and techniques using C++. This book is also valuable for data analysts, scientists, and developers who want to implement machine learning models in production. Working knowledge of C++ is needed to make the most of this book.

39.99 In Stock
Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines

Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines

by Kirill Kolodiazhnyi
Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines

Hands-On Machine Learning with C++: Build, train, and deploy end-to-end machine learning and deep learning pipelines

by Kirill Kolodiazhnyi

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Apply supervised and unsupervised machine learning algorithms using C++ libraries, such as PyTorch C++ API, Flashlight, Blaze, mlpack, and dlib using real-world examples and datasets

Free with your book: DRM-free PDF version + access to Packt's next-gen Reader*

Key Features
  • Familiarize yourself with data processing, performance measuring, and model selection using various C++ libraries
  • Implement practical machine learning and deep learning techniques to build smart models
  • Deploy machine learning models to work on mobile and embedded devices
  • Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionWritten by a seasoned software engineer with several years of industry experience, this book will teach you the basics of machine learning (ML) and show you how to use C++ libraries, along with helping you create supervised and unsupervised ML models.

You’ll gain hands-on experience in tuning and optimizing a model for various use cases, enabling you to efficiently select models and measure performance. The chapters cover techniques such as product recommendations, ensemble learning, anomaly detection, sentiment analysis, and object recognition using modern C++ libraries. You’ll also learn how to overcome production and deployment challenges on mobile platforms, and see how the ONNX model format can help you accomplish these tasks.

This edition is updated with key topics such as sentiment analysis implementation using transfer learning and transformer-based models, with tracking and visualizing ML experiments with MLflow. An additional section shows how to use Optuna for hyperparameter selection. The section on model deployment into mobile platform includes a detailed explanation of real-time object detection for Android with C++.

By the end of this C++ book, you’ll have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

*Email sign-up and proof of purchase requiredWhat you will learn

  • Employ key machine learning algorithms using various C++ libraries
  • Load and pre-process different data types to suitable C++ data structures
  • Find out how to identify the best parameters for a machine learning model
  • Use anomaly detection for filtering user data
  • Apply collaborative filtering to manage dynamic user preferences
  • Utilize C++ libraries and APIs to manage model structures and parameters
  • Implement C++ code for object detection using a modern neural network
Who this book is for

This book is for beginners looking to explore machine learning algorithms and techniques using C++. This book is also valuable for data analysts, scientists, and developers who want to implement machine learning models in production. Working knowledge of C++ is needed to make the most of this book.


Product Details

ISBN-13: 9781805126140
Publisher: Packt Publishing
Publication date: 01/24/2025
Sold by: Barnes & Noble
Format: eBook
Pages: 518
File size: 19 MB
Note: This product may take a few minutes to download.

About the Author

Kirill Kolodiazhnyi is a seasoned soft ware engineer with expertise in custom soft ware development. He has several years of experience building machine learning models and data products using C++. He holds a bachelor's degree in computer science from the Kharkiv National University of Radio Electronics.

Table of Contents

Table of Contents

  1. Introduction to Machine Learning with C++
  2. Data Processing
  3. Measuring Performance and Selecting Models
  4. Clustering
  5. Anomaly Detection
  6. Dimensionality Reduction
  7. Classification
  8. Recommender Systems
  9. Ensemble Learning
  10. Neural Networks for Image Classification
  11. Sentiment Analysis with Recurrent Neural Networks
  12. Exporting and Importing Models
  13. Deploying Models on Mobile and Cloud Platforms
From the B&N Reads Blog

Customer Reviews