Hard Ball Systems and the Lorentz Gas / Edition 1

Hard Ball Systems and the Lorentz Gas / Edition 1

by L.A. Bunimovich, D. Burago, N. Chernov, E.G.D. Cohen
     
 

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by

See more details below

Overview

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic topics: hyperbolicity and ergodicity, correlation decay, Lyapunov exponents, Kolmogorov-Sinai entropy, entropy production, irreversibility. This collection is a unique introduction into the subject for graduate students, postdocs or researchers - in both mathematics and physics - who want to start working in the field.

Product Details

ISBN-13:
9783642087110
Publisher:
Springer Berlin Heidelberg
Publication date:
12/08/2010
Series:
Encyclopaedia of Mathematical Sciences Series, #101
Edition description:
Softcover reprint of hardcover 1st ed. 2000
Pages:
458
Product dimensions:
0.94(w) x 9.21(h) x 6.14(d)

Meet the Author

Table of Contents

Part I. Mathematics: 1. D. Burago, S. Ferleger, A. Kononenko: A Geometric Approach to Semi-Dispersing Billiards.- 2. T. J. Murphy, E. G. D. Cohen: On the Sequences of Collisions Among Hard Spheres in Infinite Spacel- 3. N. Simanyi: Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity.- 4. N. Chernov, L.-S. Young: Decay of Correlations for Lorentz Gases and Hard Balls.- 5. N. Chernov: Entropy Values and Entropy Bounds.- 6. L. A. Bunimovich: Existence of Transport Coefficients.- 7. C. Liverani: Interacting Particles.- 8. J. L. Lebowitz, J. Piasecki and Ya. G. Sinai: Scaling Dynamics of a Massive Piston in an Ideal Gas .- Part II. Physics: 1. H. van Beijeren, R. van Zon, J. R. Dorfman: Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy, and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases.- 2. H. A. Posch and R. Hirschl: Simulation of Billiards and of Hard-Body Fluids.- 3. C. P. Dettmann: The Lorentz Gas: a Paradigm for Nonequilibrium Stationary States.- 4. T. Tl, J. Vollmer: Entropy Balance, Multibaker Maps, and the Dynamics of the Lorentz Gas.- Appendix: 1. D. Szasz: Boltzmanns Ergodic Hypothesis, a Conjecture for Centuries?

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >