The Heat Kernel and Theta Inversion on SL2(C) / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$135.20
Used and New from Other Sellers
Used and New from Other Sellers
from $111.40
Usually ships in 1-2 business days
(Save 34%)
Other sellers (Paperback)
  • All (5) from $111.40   
  • New (4) from $111.40   
  • Used (1) from $207.88   

Overview

The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2,Z[i])\SL(2,C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel on SL(2,C) associated to the invariant Laplacian, which is derived using spherical inversion. The heat kernel on the quotient space SL(2,Z[i])\SL(2,C) is arrived at through periodization, and further expanded in an eigenfunction expansion. A theta inversion formula is obtained by studying the trace of the heat kernel. Following the author's previous work, the inversion formula then leads to zeta functions through the Gauss transform.

Read More Show Less

Editorial Reviews

From the Publisher

From the reviews:

"The book under review … provides an introduction to the general theory of semisimple or reductive groups G, with symmetric space G/K (K maximal compact). … It is … meant for experienced insiders, even as the presentation of the material is excellent and accessible. A well-prepared graduate student would do well with this book. More experienced analytic number theorists will find it enjoyable and spellbinding. … I heartily recommend to other analytic number theorists of a similar disposition." (Michael Berg, MAA Online, December, 2008)

“This book is part of a program of the authors to develop a systematic theory of theta and zeta functions on homogeneous spaces, using techniques of harmonic analysis and, in particular, heat kernels. … the book includes many details that would likely have been left for the reader to work out by her/himself in a more streamlined monograph. … all in all, an enjoyable book to read.” (Fredrik Strömberg, Zentralblatt MATH, Vol. 1192, 2010)

Read More Show Less

Product Details

  • ISBN-13: 9781441922823
  • Publisher: Springer New York
  • Publication date: 11/19/2010
  • Series: Springer Monographs in Mathematics Series
  • Edition description: Softcover reprint of hardcover 1st ed. 2008
  • Edition number: 1
  • Pages: 319
  • Product dimensions: 0.69 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

Introduction.- Spherical Inversion on SL2(C).- The Heat Gaussian and Kernel.- QED, LEG, Transpose, and Casimir.- Convergence and Divergence of the Selberg Trace.- The Cuspidal and Non-Cuspidal Traces.- The Heat Kernel.- The Fundamental Domain.- Gamma Periodization of the Heat Kernel.- Heat Kernel Convolution.- The Tube Domain.- The Fourier Expansion of Eisenstein Series.- Adjointness Formula and the Eigenfunction Expansion.- The Eisenstein Y-Asymptotics.- The Cuspidal Trace Y-Asymptotics.- Analytic Evaluations.- Index.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)