Heat Kernels and Dirac Operators / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$54.91
Used and New from Other Sellers
Used and New from Other Sellers
from $60.63
Usually ships in 1-2 business days
(Save 19%)
Other sellers (Paperback)
  • All (9) from $60.63   
  • New (5) from $60.63   
  • Used (4) from $83.04   

Overview

In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.

Read More Show Less

Editorial Reviews

From the Publisher

Aus den Rezensionen:

"… Das vorliegende Buch ist die zweite korrigierte und erweiterte Ausgabe eines Werkes aus dem Jahre 1992. … Ausgehend von einer Grundausbildung in klassischer Differentialgeometrie stellt das Buch alle zum Verständnis des Beweises notwendigen Voraussetzungen zur Verfügung. Dadurch eignet es sich einerseits zum Selbststudium für Studierende mit entsprechender Vorbildung … andererseits als Grundlage einer Vorlesung über dieses ergiebige Thema."

(P. Grabner, in: IMN - Internationale Mathematische Nachrichten, 2006, Issue 202, S. 45)

Read More Show Less

Product Details

  • ISBN-13: 9783540200628
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 2/12/2004
  • Series: Grundlehren Text Editions Series
  • Edition description: 1992
  • Edition number: 1
  • Pages: 363
  • Product dimensions: 0.78 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

1 Background on Differential Geometry.- 1.1 Fibre Bundles and Connections.- 1.2 Riemannian Manifolds.- 1.3 Superspaces.- 1.4 Superconnections.- 1.5 Characteristic Classes.- 1.6 The Euler and Thorn Classes.- 2 Asymptotic Expansion of the Heat Kernel.- 2.1 Differential Operators.- 2.2 The Heat Kernel on Euclidean Space.- 2.3 Heat Kernels.- 2.4 Construction of the Heat Kernel.- 2.5 The Formal Solution.- 2.6 The Trace of the Heat Kernel.- 2.7 Heat Kernels Depending on a Parameter.- 3 Clifford Modules and Dirac Operators.- 3.1 The Clifford Algebra.- 3.2 Spinors.- 3.3 Dirac Operators.- 3.4 Index of Dirac Operators.- 3.5 The Lichnerowicz Formula.- 3.6 Some Examples of Clifford Modules.- 4 Index Density of Dirac Operators.- 4.1 The Local Index Theorem.- 4.2 Mehler’s Formula.- 4.3 Calculation of the Index Density.- 5 The Exponential Map and the Index Density.- 5.1 Jacobian of the Exponential Map on Principal Bundles.- 5.2 The Heat Kernel of a Principal Bundle.- 5.3 Calculus with Grassmann and Clifford Variables.- 5.4 The Index of Dirac Operators.- 6 The Equivariant Index Theorem.- 6.1 The Equivariant Index of Dirac Operators.- 6.2 The Atiyah-Bott Fixed Point Formula.- 6.3 Asymptotic Expansion of the Equivariant Heat Kernel.- 6.4 The Local Equivariant Index Theorem.- 6.5 Geodesic Distance on a Principal Bundle.- 6.6 The heat kernel of an equivariant vector bundle.- 6.7 Proof of Proposition 6.13.- 7 Equivariant Differential Forms.- 7.1 Equivariant Characteristic Classes.- 7.2 The Localization Formula.- 7.3 Bott’s Formulas for Characteristic Numbers.- 7.4 Exact Stationary Phase Approximation.- 7.5 The Fourier Transform of Coadjoint Orbits.- 7.6 Equivariant Cohomology and Families.- 7.7 The Bott Class.- 8 The Kirillov Formula for the Equivariant Index.- 8.1 The Kirillov Formula.- 8.2 The Weyl and Kirillov Character Formulas.- 8.3 The Heat Kernel Proof of the Kirillov Formula.- 9 The Index Bundle.- 9.1 The Index Bundle in Finite Dimensions.- 9.2 The Index Bundle of a Family of Dirac Operators.- 9.3 The Chern Character of the Index Bundle.- 9.4 The Equivariant Index and the Index Bundle.- 9.5 The Case of Varying Dimension.- 9.6 The Zeta-Function of a Laplacian.- 9.7 The Determinant Line Bundle.- 10 The Family Index Theorem.- 10.1 Riemannian Fibre Bundles.- 10.2 Clifford Modules on Fibre Bundles.- 10.3 The Bismut Superconnection.- 10.4 The Family Index Density.- 10.5 The Transgression Formula.- 10.6 The Curvature of the Determinant Line Bundle.- 10.7 The Kirillov Formula and Bismut’s Index Theorem.- References.- List of Notation.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)