BN.com Gift Guide

High Performance Embedded Computing: Handbooka Systems Perspective

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $173.85
Usually ships in 1-2 business days
(Save 8%)
Other sellers (Hardcover)
  • All (2) from $173.85   
  • New (1) from $173.85   
  • Used (1) from $211.04   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$173.85
Seller since 2009

Feedback rating:

(10656)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
New Book. Shipped from US within 10 to 14 business days. Established seller since 2000.

Ships from: Secaucus, NJ

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

More About This Textbook

Overview

Over the past several decades, applications permeated by advances in digital signal processing have undergone unprecedented growth in capabilities. The editors and authors of High Performance Embedded Computing Handbook: A Systems Perspective have been significant contributors to this field, and the principles and techniques presented in the handbook are reinforced by examples drawn from their work.

The chapters cover system components found in today’s HPEC systems by addressing design trade-offs, implementation options, and techniques of the trade, then solidifying the concepts with specific HPEC system examples. This approach provides a more valuable learning tool, Because readers learn about these subject areas through factual implementation cases drawn from the contributing authors’ own experiences.

Discussions include:

  • Key subsystems and components
  • Computational characteristics of high performance embedded algorithms and applications
  • Front-end real-time processor technologies such as analog-to-digital conversion, application-specific integrated circuits, field programmable gate arrays, and intellectual property–based design
  • Programmable HPEC systems technology, including interconnection fabrics, parallel and distributed processing, performance metrics and software architecture, and automatic code parallelization and optimization
  • Examples of complex HPEC systems representative of actual prototype developments
  • Application examples, including radar, communications, electro-optical, and sonar applications

The handbook is organized around a canonical framework that helps readers navigate through the chapters, and it concludes with a discussion of future trends in HPEC systems. The material is covered at a level suitable for practicing engineers and HPEC computational practitioners and is easily adaptable to their own implementation requirements.

Read More Show Less

Product Details

  • ISBN-13: 9780849371974
  • Publisher: CRC Press
  • Publication date: 6/16/2008
  • Pages: 600
  • Product dimensions: 7.00 (w) x 10.00 (h) x 1.30 (d)

Table of Contents

INTRODUCTION
A Retrospective on High Performance Embedded Computing
D.R. Martinez
HPEC Hardware Systems and Software Technologies
HPEC Multiprocessor System
Representative Example of a High Performance Embedded Computing System
D.R. Martinez
System Complexity
Implementation Techniques
Software Complexity and System Integration
System Architecture of a Multiprocessor System
D.R. Martinez
A Generic Multiprocessor System
A High Performance Hardware System
Custom VLSI Implementation: Custom VLSI Hardware
A High Performance COTS Programmable Signal Processor
High Performance Embedded Computers: Development Process and
Management Perspectives
D.R. Martinez
Development Process
Case Study: Airborne Radar HPEC System: Programmable Signal Processor Development; Software Estimation, Monitoring, and Configuration Control; PSP Software Integration, Optimization, and Verification
Trends
Computational Nature of High Performance
Embedded Systems
Computational Characteristics of High Performance Embedded Algorithms and Applications
M. Arakawa and R.A. Bond
General Computational Characteristics of HPEC
Complexity of HPEC Algorithms
Parallelism in HPEC Algorithms and Architectures
Future Trends
Radar Signal Processing: An Example of High Performance Embedded Computing
R.A. Bond and A.I. Reuther
A Canonical HPEC Radar Algorithm: Subband Analysis and Synthesis; Adaptive Beamforming; Pulse Compression; Doppler Filtering; Space-Time Adaptive Processing; Subband Synthesis Revisited; CFAR Detection
Example Architecture of the Front-End Processor: A Discussion of the Back-End Processing
Front-End Real-Time Processor Technologies
Analog-to-Digital Conversion
J.C. Anderson and H.H. Kim
Conceptual ADC Operation
Static Metrics:Offset Error; Gain Error; Differential Nonlinearity; Integral Nonlinearity
Dynamic Metrics: Resolution; Monotonicity; Equivalent Input-Referred Noise (Thermal Noise); Quantization Error; Ratio of Signal to Noise and Distortion; Effective Number of Bits; Spurious-Free Dynamic Range; Dither; Aperture Uncertainty
System-Level Performance Trends and Limitations: Trends in Resolution; Trends in Effective Number of Bits; Trends in Spurious-Free Dynamic Range; Trends in Power Consumption; ADC Impact on Processing Gain
High-Speed ADC Design: Flash ADC; Architectural Techniques for Power Saving; Pipeline ADC
Power Dissipation Issues in High-Speed ADCs
Implementation Approaches of Front-End Processors
M.M. Vai and H.T. Nguyen
Front-End Processor Design Methodology
Front-End Signal Processing Technologies: Full-Custom ASIC; Synthesized ASIC; FPGA Technology;
Structured ASIC
Intellectual Property
Development Cost
Design Space
Design Case Studies: Channelized Adaptive Beamformer Processor; Radar Pulse Compression Processor;
Co-design Benefits
Application-Specific Integrated Circuits
M.M. Vai, W.S. Song, and B.M. Tyrell
Integrated Circuit Technology Evolution
CMOS Technology: MOSFET
CMOS Logic Structures: Static Logic; Dynamic CMOS Logic
Integrated Circuit Fabrication
Performance Metrics: Speed; Power Dissipation
Design Methodology: Full-Custom Physical Design; Synthesis Process; Physical Verification;
Simulation; Design for Manufacturability
Packages
Testing: Fault Models; Test Generation for Stuck-at Faults; Design for Testability; Built-in Self-Test
Case Study
Field Programmable Gate Arrays
M.Leeser
FPGA Structures: Basic Structures Found in FPGAs
Modern FPGA Architectures: Embedded Blocks; Future Directions
Commercial FPGA Boards and Systems
Languages and Tools for Programming FPGAs: Hardware Description Languages; High-Level Languages; Library-Based Solutions
Case Study: Radar Processing on an FPGA: Project Description; Parallelism: Fine-Grained versus Coarse-Grained; Data Organization; Experimental Results
Challenges to High Performance With FPGA Architectures: Data: Movement and Organization; Design Trade-offs
Intellectual Property-Based Design
W. Wolf
Classes of Intellectual Property
Sources of Intellectual Property
Licenses for Intellectual Property
CPU Cores
Busses
I/O Devices
Memories
Operating Systems
Software Libraries and Middleware
IP-Based Design Methodologies
Standards-Based Design
Systolic Array Processors
M.M. Vai, H.T. Nguyen, P.A. Jackson, and W.S. Song
Beamforming Processor Design
Systolic Array Design Approach
Design Examples: QR Decomposition Processor; Real-Time FFT Processor; Bit-Level Systolic Array Methodology
Programmable High Performance Embedded
Computing Systems
Computing Devices
K. Teitelbaum
Common Metrics: Assessing the Required Computation Rate; Quantifying the Performance of COTS Computing Devices
Current COTS Computing Devices in Embedded Systems: General-Purpose Microprocessors:
Word Length, Vector Processing Units, Power Consumption versus Performance, Memory Hierarchy, Some Benchmark Results, Input/Output, Digital Signal Processors; Future Trends: Technology Projections and Extrapolating Current Architectures; Advanced Architectures and the Exploitation of Moore’s Law: Multiple-Core Processors, The IBM Cell Broadband Engine, SIMD Processor Arrays, DARPA Polymorphic Computing Architectures, Graphical Processing Units as Numerical Co-processors, FPGA-Based Co-processors
Interconnection Fabrics
K. Teitelbaum
Introduction: Anatomy of a Typical Interconnection Fabric; Network Topology and Bisection Bandwidth;
Total Exchange; Parallel Two-Dimensional Fast Fourier Transform—A Simple Example
Crossbar Tree Networks: Network Formulas; Scalability of Network Bisection Width; Units of Replication;
Pruning Crossbar Tree Networks
VXS: A Commercial Example: Link Essentials; VXS-Supported Topologies
Performance Metrics and Software Architecture
J. Kepner, T. Meuse, and G.E. Schrader
Synthetic Aperture Radar Example Application: Operating Modes; Computational Workload
Degrees of Parallelism: Parallel Performance Metrics (no communication); Parallel Performance Metrics (with communication); Amdahl’s Law
Standard Programmable Multi-Computer: Network Model
Parallel Programming Models and Their Impact: High-Level Programming Environment with Global Arrays
System Metrics: Performance; Form Factor; Efficiency; Software Cost
Appendices: A Synthetic Aperture Radar Algorithm: Scalable Data Generator; Stage 1: Front-End Sensor Processing; Stage 2: Back-End Knowledge Formation
Programming Languages
J.M. Lebak
Principles of Programming Embedded Signal Processing Systems
Evolution of Programming Languages
Features of Third-Generation Programming Languages: Object-Oriented Programming; Exception Handling; Generic Programming
Use of Specific Languages in High Performance Embedded Computing:
C; Fortran; Ada; C++; Java
Future Development of Programming Languages
Summary: Features of Current Programming Languages
Portable Software Technology
J.M. Lebak
Libraries: Distributed and Parallel Programming; Surveying the State of Portable Software Technology:
Portable Math Libraries, Portable Performance Using Math Libraries; Parallel and Distributed Libraries; Example: Expression Template Use in the MIT Lincoln Laboratory Parallel
Vector Library
Parallel and Distributed Processing
A. I. Reuther and H. G. Kim
Parallel Programming Models: Threads: Pthreads, OpenMP; Message Passing: Parallel Virtual Machine, Message Passing Interface; Partitioned Global Address Space: Unified Parallel C, VSIPL++; Applications: Fast Fourier Transform, Synthetic Aperture Radar
Distributed Computing Models: Client-Server: SOAP, Java Remote Method Invocation, Common Object Request Broker Architecture; Data Driven: Java Messaging Service, Data Distribution Service; Applications: Radar Open Systems Architecture, Integrated Sensing and Decision Support
Automatic Code Parallelization and Optimization
N.T. Bliss
Instruction-Level Parallelism versus Explicit-Program Parallelism
Automatic Parallelization Approaches: A Taxonomy
Maps and Map Independence
Local Optimization in an Automatically Tuned Library
Compiler and Language Approach
Dynamic Code Analysis in a Middleware System
High Performance Embedded Computing
Application Examples
Radar Applications
K. Teitelbaum
Basic Radar Concepts:Pulse-Doppler Radar Operation; Multichannel Pulse-Doppler; Adaptive Beamforming; Space-Time Adaptive Processing
Mapping Radar Algorithms onto HPEC Architectures: Round-Robin Partitioning; Functional Pipelining; Coarse-Grain Data-Parallel Partitioning; Fine-Grain Data-Parallel Partitioning
Implementation Examples: Radar Surveillance Processor; Adaptive Processor (Generation 1); Adaptive Processor (Generation 2); KASSPER
A Sonar Application
W.R. Bernecky
Sonar Problem Description
Designing an Embedded Sonar System: The Sonar Processing Thread; Prototype Development; Computational Requirements; Parallelism; Implementing the Real-Time System; Verify Real-Time Performance; Verify Correct Output
An Example Development: System Attributes; Sonar Processing Thread Computational Requirements; Sensor Data Collection; Two-Dimensional Fast Fourier Transform; Covariance Matrix Formation;
Covariance Matrix Inversion; Adaptive Beamforming; Broadband Formation; Normalization; Detection; Display Preparation and Operator Controls; Summary of Computational Requirements; Parallelism
Hardware Architecture
Software Considerations
Embedded Sonar Systems of the Future References
Communications Applications
J.I. Goodman and T.G. Macdonald
Communications Application Challenges
Communications Signal Processing, Transmitter Signal Processing; Transmitter Processing Requirements; Receiver Signal Processing; Receiver Processing Requirements
Development of a Real-Time Electro-Optical Reconnaissance System
R.A. Coury
Aerial Surveillance Background
Methodology: Performance Modeling; Feature Tracking and Optic Flow; Three-Dimensional Site Model Generation; Challenges; Camera Model; Distortion
System Design Considerations: Altitude; Sensor; GPS/IMU; Processing and Storage; Communications; Cost; Test Platform
Transition to Target Platform: Payload; GPS/IMU; Sensor; Processing; Communications and Storage; Altitude
Future Trends
Application and HPEC System Trends
D.R. Martinez
Introduction: Sensor Node Architecture Trends
Hardware Trends
Software Trends
Distributed Net-Centric Architecture
A Review on Probabilistic CMOS (PCMOS) Technology: From Device
Characteristics to Ultra-Low-Energy SOC Architectures
K.V. Palem, L.N. Chakrapani, B.E.S. Akgul, and P. Korkmaz
Characterizing the Behavior of a PCMOS Switch: Inverter Realization of a Probabilistic Switch;
Analytical Model and the Three Laws of a PCMOS Inverter; Realizing a Probabilistic Inverter with Limited Available Noise
Realizing PCMOS-Based Low-Energy Architectures: Metrics for Evaluating PCMOS-Based Architectures; Experimental Methodology; Metrics for Analysis of PCMOS-Based Implementations; Hyperencryption Application and PCMOS-Based Implementation; Results and Analysis; PCMOS-Based Architectures for Error-Tolerant Applications
Advanced Microprocessor Architectures
J. McMahon, S. Crago, and D. Yeung
Background: Established Instruction-Level Parallelism Techniques; Parallel Architectures
Motivation for New Architectures: Limitations of Conventional Microprocessors
Current Research Microprocessors: Instruction-Level Parallelism: Tile-Based Organization; Explicit Parallelism Model; Scalable On-Chip Networks; Data-Level Parallelism: SIMD Architectures; Vector Architectures; Streaming Architectures; Thread-Level Parallelism: Multithreading and Granularity;
Multilevel Memory; Speculative Execution
Real-Time Embedded Applications: Scalability; Input/Output Bandwidth; Programming Models and Algorithm Mapping
Glossary of Acronyms and Abbreviations
Index

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted November 5, 2008

    very good archival book for high performance book

    I give this book my highest rate for researchers and scholars in high performance computing area. I won't recommend this book to general readers.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)