High Temperature Performance of Polymer Composites [NOOK Book]

Overview

The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and ...
See more details below
High Temperature Performance of Polymer Composites

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$91.49
BN.com price
(Save 42%)$160.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000?C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure.

Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemists, engineering scientists in industry, civil engineers, mechanical engineers, and those working in the industry of civil infrastructure.
Read More Show Less

Product Details

  • ISBN-13: 9783527654161
  • Publisher: Wiley
  • Publication date: 11/21/2013
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 340
  • File size: 19 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Yu Bai received his PhD in civil engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland in 2009 and became an academic in the Department of Civil Engineering of Monash University Australia in the same year. His research investigates the material and structural responses of fiber-reinforced polymer composites under critical load and environmental conditions such as fire, combined temperature and humidity, and sea water exposure. His research efforts are also focused on developing new building techniques and structural systems using fiber-reinforced polymer composite materials. In 2012, he received the Discovery Early Career Researcher Award from the Australia Research Council, as the inaugural recipient.

Thomas Keller obtained his civil engineering degree and his doctoral degree from the Swiss Federal Institute of Technology (ETH) Zurich. In 2007, he was appointed Full Professor of Structures at the School of Architecture, Civil and Environmental Engineering at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. In addition, Thomas Keller is founder and director of the Composite Construction Laboratory (CCLab). His research work is focused on polymer composites and hybrid materials and engineering structures with an emphasis on lightweight multifunctional structures.
Read More Show Less

Table of Contents

Preface

INTRODUCTION
Background
FTP Materials and Processing
FRP Structures
Structural Fire Safety
Summary

MATERIAL STATES OF FRP COMPOSITES UNDER ELEVATED AND HIGH TEMPERATURES
Introduction
Glass Transition
Leathery-to-Rubbery Transition
Decomposition
Summary

EFFECTIVE PROPERTIES OF MATERIAL MIXTURES
Introduction
Volume Fraction of Material State
Statistical Distribution Functions
Estimated Effective Properties
Summary

THERMOPHYSICAL PROPERTIES OF FRP COMPOSITES
Introduction
Change of Mass
Thermal Conductivity
Specific Heat Capacity
Time Dependence of Thermophysical Properties
Summary

THERMOMECHANICAL PROPERTIES OF FRP COMPOSITES
Introduction
Elastic and Shear Modulus
Effective Coefficient of Thermal Expansion
Strength
Summary

THERMAL RESPONSES OF FRP COMPOSITES
Introduction
Full-Scale Cellular Beam Experiments
Thermal Response Modeling of Beam Experiments
Full-Scale Cellular Column Experiments
Thermal Resonse Modeling of Column Experiments
Summary

MECHANICAL RESPONSES OF FRP COMPOSITES
Introduction
Full-Scale Cellular Beam Experiments
Mechanical Response Modeling of Beam Experiments
Full-Scale Cellular Column Experiments
Mechanical Response Modeling of Column Experiments
Axial Compression Experiments on Compact Specimens
Modeling of Compression Experiments on Compact Specimens
Axial Compression Experiments on Slender Specimens
Modeling of Compression Experiments on Slender Specimens
Summary

POST-FIRE BEHAVIOR OF FRP COMPOSITES
Introduction
Post-Fire Behavior of FRP Beams
Post-Fire Modeling of FRP Beams
Post-Fire Behavior of FRP Columns
Post-Fire Modeling of FRP Columns
Comparison to Post-Fire Beam Experiments
Summary

FIRE PROTECTION PRACTICES FOR FRP COMPONENTS
Introduction
Passive Fire Protection
Active Fire Protection
Passive Fire Protection Applications with FRP Components
Active Fire Protection Applications with FRP Components
Summary

Index
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)