Holomorphic Morse Inequalities and Bergman Kernels
This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications.

The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.

1008345681
Holomorphic Morse Inequalities and Bergman Kernels
This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications.

The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.

139.99 In Stock
Holomorphic Morse Inequalities and Bergman Kernels

Holomorphic Morse Inequalities and Bergman Kernels

Holomorphic Morse Inequalities and Bergman Kernels

Holomorphic Morse Inequalities and Bergman Kernels

Hardcover(2007)

$139.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications.

The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.


Product Details

ISBN-13: 9783764380960
Publisher: Birkh�user Basel
Publication date: 09/14/2007
Series: Progress in Mathematics , #254
Edition description: 2007
Pages: 422
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Demailly’s Holomorphic Morse Inequalities.- Characterization of Moishezon Manifolds.- Holomorphic Morse Inequalities on Non-compact Manifolds.- Asymptotic Expansion of the Bergman Kernel.- Kodaira Map.- Bergman Kernel on Non-compact Manifolds.- Toeplitz Operators.- Bergman Kernels on Symplectic Manifolds.
From the B&N Reads Blog

Customer Reviews