BN.com Gift Guide

Hybrid Systems with Constraints

Overview

Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.
The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been ...

See more details below
Other sellers (Hardcover)
  • All (11) from $99.93   
  • New (10) from $99.93   
  • Used (1) from $105.35   

Overview

Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.
The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.
This book is dedicated mainly to hybrid systems with constraints; taking constraints into account in a dynamic system description has always been a critical issue in control. New tools are provided here for stability analysis and control design for hybrid systems with operating constraints and performance specifications.

Contents

1. Positive Systems: Discretization with Positivity and Constraints, Patrizio Colaneri, Marcello Farina, Stephen Kirkland, Riccardo Scattolini and Robert Shorten.
2. Advanced Lyapunov Functions for Lur’e Systems, Carlos A. Gonzaga, Marc Jungers and Jamal Daafouz.
3. Stability of Switched DAEs, Stephan Trenn.
4. Stabilization of Persistently Excited Linear Systems, Yacine Chitour, Guilherme Mazanti and Mario Sigalotti.
5. Hybrid Coordination of Flow Networks, Claudio De Persis, Paolo Frasca.
6. Control of Hybrid Systems: An Overview of Recent Advances, Ricardo G. Sanfelice.
7. Exponential Stability for Hybrid Systems with Saturations, Mirko Fiacchini, Sophie Tarbouriech, Christophe Prieur.
8. Reference Mirroring for Control with Impacts, Fulvio Forni, Andrew R. Teel, Luca Zaccarian.

About the Authors

Jamal Daafouz is an expert in the area of switched and polytopic systems and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He serves as an Associate Editor for the key journal IEEE TAC and is a member of the Editorial Board of the IEEE CSS society.
Sophie Tarbouriech is an expert in the area of nonlinear systems with constraints and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.) and books. She is a member of the Editorial Board of the IEEE CSS society and has also served as an Associate Editor for the key journal IEEE TAC.
Mario Sigalotti is an expert in applied mathematics and switched systems and has published several results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He heads the INRIA team GECO and is a member of the IFAC Technical Committee on Distributed Parameter Systems.

Read More Show Less

Product Details

  • ISBN-13: 9781848215276
  • Publisher: Wiley
  • Publication date: 5/13/2013
  • Series: ISTE Series
  • Edition number: 1
  • Pages: 288
  • Product dimensions: 9.60 (w) x 6.30 (h) x 0.90 (d)

Table of Contents

Preface xi

Chapter 1. Positive Systems: Discretization with Positivity and Constraints 1
Patrizio COLANERI, Marcello FARINA, Stephen KIRKLAND, Riccardo SCATTOLINI and Robert SHORTEN

1.1. Introduction and statement of the problem 1

1.2. Discretization of switched positive systems via Padé transformations 4

1.2.1. Preservation of copositive Lyapunov functions 4

1.2.2. Non-negativity of the diagonal Padé approximation 7

1.2.3. An alternative approximation to the exponential matrix 9

1.3. Discretization of positive switched systems with sparsity constraints 10

1.3.1. Forward Euler discretization 10

1.3.2. The mixed Euler-ZOH discretization 11

1.3.3. The mixed Euler-ZOH discretization for switched systems 14

1.4. Conclusions 18

1.5. Bibliography 18

Chapter 2. Advanced Lyapunov Functions for Lur’e Systems 21
Carlos A. GONZAGA, Marc JUNGERS and Jamal DAAFOUZ

2.1. Introduction 21

2.2. Motivating example 24

2.3. A new Lyapunov Lur’e-type function for discrete-time Lur’e systems 26

2.3.1. Definition of discrete-time Lur’e systems 26

2.3.2. Introduction of a new discrete-time Lyapunov Lur’e-type function 26

2.3.3. Global stability analysis 29

2.3.4. Local stability analysis 30

2.4. Switched discrete-time Lur’e system with arbitrary switching law 37

2.4.1. Definition of the switched discrete-time Lur’e system 37

2.4.2. Switched discrete-time Lyapunov Lur’e-type function 38

2.4.3. Global stability analysis 38

2.4.4. Local stability analysis 40

2.5. Switched discrete-time Lur’e system controlled by the switching law 46

2.5.1. Global stabilization 46

2.5.2. Local stabilization 48

2.6. Conclusion 51

2.7. Bibliography 52

Chapter 3. Stability of Switched DAEs 57
Stephan TRENN

3.1. Introduction 57

3.1.1. Systems class: definition and motivation 57

3.1.2. Examples 59

3.2. Preliminaries 62

3.2.1. Non-switched DAEs: solutions and consistency projector 62

3.2.2. Lyapunov functions for non-switched DAEs 66

3.2.3. Classical distribution theory 67

3.2.4. Piecewise-smooth distributions and solvability of [3.1] 69

3.3. Stability results 71

3.3.1. Stability under arbitrary switching 72

3.3.2. Slow switching 74

3.3.3. Commutativity and stability 75

3.3.4. Lyapunov exponent and converse Lyapunov theorem 77

3.4. Conclusion 81

3.5. Acknowledgments 81

3.6. Bibliography 81

Chapter 4. Stabilization of Persistently Excited Linear Systems 85
Yacine CHITOUR, Guilherme MAZANTI and Mario SIGALOTTI

4.1. Introduction 86

4.2. Finite-dimensional systems 89

4.2.1. The neutrally stable case 90

4.2.2. Spectra with non-positive real part 91

4.2.3. Arbitrary rate of convergence 97

4.3. Infinite-dimensional systems 101

4.3.1. Exponential stability under persistent excitation 103

4.3.2. Weak stability under persistent excitation 105

4.3.3. Other conditions of excitation 106

4.4. Further discussion and open problems 110

4.4.1. Lyapunov-based arguments for the existing results 111

4.4.2. Generalization of theorem 4.5 to higher dimensions 111

4.4.3. Generalizations of theorem 4.8 112

4.4.4. Properties of ρ(A, T ) 116

4.4.5. Stabilizability at an arbitrary rate for systems with several inputs 117

4.4.6. Infinite-dimensional systems 118

4.5. Bibliography 118

Chapter 5. Hybrid Coordination of Flow Networks 121
Claudio De PERSIS, Paolo FRASCA

5.1. Introduction 121

5.2. Flow network model and problem statement 123

5.2.1. Load balancing 124

5.3. Self-triggered gossiping control of flow networks 125

5.4. Practical load balancing 127

5.5. Load balancing with delayed actuation and skewed clocks 132

5.6. Asymptotical load balancing 136

5.7. Conclusions 141

5.8. Acknowledgments 141

5.9. Bibliography 141

Chapter 6. Control of Hybrid Systems: An Overview of Recent Advances 145
Ricardo G. SANFELICE

6.1. Introduction 145

6.2. Preliminaries 149

6.2.1. Notation 149

6.2.2. Notion of solution for hybrid systems 150

6.3. Stabilization of hybrid systems 151

6.4. Static state feedback stabilizers 155

6.4.1. Existence of continuous static stabilizers 157

6.5. Passivity-based control 159

6.5.1. Passivity 160

6.5.2. Linking passivity to asymptotic stability 164

6.5.3. A construction of passivity-based controllers 167

6.6. Tracking control 169

6.7. Conclusions 176

6.8. Acknowledgments 176

6.9. Bibliography 177

Chapter 7. Exponential Stability for Hybrid Systems with Saturations 179
Mirko FIACCHINI, Sophie TARBOURIECH, Christophe PRIEUR

7.1. Introduction 179

7.2. Problem statement 181

7.2.1. Saturated reset systems 182

7.3. Set theory and invariance for nonlinear systems: brief overview 185

7.3.1. Invariance for convex difference inclusions 186

7.4. Quadratic stability for saturated hybrid systems 190

7.4.1. Set-valued extensions of saturated functions 190

7.4.2. Continuous-time quadratic stability 192

7.4.3. Discrete-time quadratic stability 194

7.4.4. Exponential stability for saturated hybrid systems 195

7.4.5. Exponential Lyapunov functions for saturated hybrid systems 198

7.5. Computational issues 203

7.6. Numerical examples 205

7.7. Conclusions 207

7.8. Bibliography 208

Chapter 8. Reference Mirroring for Control with Impacts 213
Fulvio FORNI, Andrew R. TEEL, Luca ZACCARIAN

8.1. Introduction 213

8.2. Hammering a surface 216

8.2.1. The reference hammer dynamics 216

8.2.2. Using dwell-time logic to avoid Zeno solutions 218

8.2.3. The controlled hammer dynamics 219

8.2.4. Instability with standard feedback tracking 220

8.2.5. Using a mirrored reference to design a hybrid stabilizer 221

8.3. Global tracking of a Newton’s cradle 224

8.3.1. The reference cradle 224

8.3.2. The controlled cradle 225

8.3.3. Using a mirrored reference to design a hybrid stabilizer 226

8.3.4. Simulations 229

8.4. Global tracking in planar triangles 230

8.4.1. The reference mass 231

8.4.2. The controlled mass 233

8.4.3. Using a family of mirrored references to design a hybrid stabilizer 233

8.4.4. Simulations 239

8.5. Global state estimation on n-dimensional convex polyhedra 240

8.5.1. The reference dynamics 241

8.5.2. The observer dynamics 243

8.5.3. Estimation by hybrid reformulation of the observer dynamics 244

8.5.4. Simulations 246

8.6. Proof of the main theorems 247

8.6.1. A useful Lyapunov result 247

8.6.2. Proofs of theorems 8.1–8.4 248

8.7. Conclusions 251

8.8. Acknowledgments 252

8.9. Bibliography 252

List of Authors 257

Index 261

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)