Hyperspectral Data Processing: Algorithm Design and Analysis

Hyperspectral Data Processing: Algorithm Design and Analysis

by Chein-I Chang
     
 

View All Available Formats & Editions

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different

Overview

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap.

Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections:

  • Part I: provides fundamentals of hyperspectral data processing
  • Part II: offers various algorithm designs for endmember extraction
  • Part III: derives theory for supervised linear spectral mixture analysis
  • Part IV: designs unsupervised methods for hyperspectral image analysis
  • Part V: explores new concepts on hyperspectral information compression
  • Parts VI&VII: develops techniques for hyperspectral signal coding and characterization
  • Part VIII: presents applications in multispectral imaging and magnetic resonance imaging

Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages.

Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.

Editorial Reviews

From the Publisher
“I make a strong recommendation to anyone interested in hyperspectral image processing, and hyperspectral signal processing to make this book a common reference.” (Photogrammetric Engineering and Remote Sensing, 1 June 2015)

Product Details

ISBN-13:
9781118269770
Publisher:
Wiley
Publication date:
02/01/2013
Sold by:
Barnes & Noble
Format:
NOOK Book
Pages:
1164
File size:
46 MB
Note:
This product may take a few minutes to download.

Meet the Author

CHEIN-I CHANG, PhD, is a Professor in the Department of Computer Science and Electrical Engineering at the University of Maryland, Baltimore County. He established the Remote Sensing Signal and Image Processing Laboratory and conducts research in designing and developing signal processing algorithms for hyperspectral imaging, medical imaging, and documentation analysis. A Fellow of IEEE and SPIE, Dr. Chang has published over 125 refereed journal articles, including more than forty papers in the IEEE Transaction on Geoscience and Remote Sensing. In addition to authoring Hyperspectral Imaging: Techniques for Spectral Detection and Classification, as well as editing two books, Hyperspectral Data Exploitation: Theory and Applications and Recent Advances in Hyperspectral Signal and Imaging Processing and co-editing one book, High Performance Computing in Remote Sensing, he holds five patents and has several pending.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >