Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction

Overview

The book is mainly concerned with the mathematical foundations of Bayesian image analysis and its algorithms. This amounts to the study of Markov random fields and dynamic Monte Carlo algorithms like sampling, simulated annealing and shastic gradient algorithms. The approach is introductory and elementary: given basic concepts from linear algebra and real analysis it is self-contained. No previous knowledge from image analysis is required. Knowledge of elementary probability theory and statistics is certainly ...

See more details below
Paperback (Softcover reprint of the original 1st ed. 1995)
$122.61
BN.com price
(Save 4%)$129.00 List Price
Other sellers (Paperback)
  • All (5) from $79.70   
  • New (4) from $79.70   
  • Used (1) from $154.11   
Sending request ...

Overview

The book is mainly concerned with the mathematical foundations of Bayesian image analysis and its algorithms. This amounts to the study of Markov random fields and dynamic Monte Carlo algorithms like sampling, simulated annealing and shastic gradient algorithms. The approach is introductory and elementary: given basic concepts from linear algebra and real analysis it is self-contained. No previous knowledge from image analysis is required. Knowledge of elementary probability theory and statistics is certainly beneficial but not absolutely necessary. The necessary background from imaging is sketched and illustrated by a number of concrete applications like restoration, texture segmentation and motion analysis.

Read More Show Less

Product Details

  • ISBN-13: 9783642975240
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 1/19/2012
  • Series: Stochastic Modelling and Applied Probability Series , #27
  • Edition description: Softcover reprint of the original 1st ed. 1995
  • Edition number: 1
  • Pages: 324
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.71 (d)

Table of Contents

I. Bayesian Image Analysis: Introduction.- 1. The Bayesian Paradigm.- 1.1 The Space of Images.- 1.2 The Space of Observations.- 1.3 Prior and Posterior Distribution.- 1.4 Bayesian Decision Rules.- 2. Cleaning Dirty Pictures.- 2.1 Distortion of Images.- 2.1.1 Physical Digital Imaging Systems.- 2.1.2 Posterior Distributions.- 2.2 Smoothing.- 2.3 Piecewise Smoothing.- 2.4 Boundary Extraction.- 3. Random Fields.- 3.1 Markov Random Fields.- 3.2 Gibbs Fields and Potentials.- 3.3 More on Potentials.- II. The Gibbs Sampler and Simulated Annealing.- 4. Markov Chains: Limit Theorems.- 4.1 Preliminaries.- 4.2 The Contraction Coefficient.- 4.3 Homogeneous Markov Chains.- 4.4 Inhomogeneous Markov Chains.- 5. Sampling and Annealing.- 5.1 Sampling.- 5.2 Simulated Annealing.- 5.3 Discussion.- 6. Cooling Schedules.- 6.1 The ICM Algorithm.- 6.2 Exact MAPE Versus Fast Cooling.- 6.3 Finite Time Annealing.- 7. Sampling and Annealing Revisited.- 7.1 A Law of Large Numbers for Inhomogeneous Markov Chains.- 7.1.1 The Law of Large Numbers.- 7.1.2 A Counterexample.- 7.2 A General Theorem.- 7.3 Sampling and Annealing under Constraints.- 7.3.1 Simulated Annealing.- 7.3.2 Simulated Annealing under Constraints.- 7.3.3 Sampling with and without Constraints.- III. More on Sampling and Annealing.- 8. Metropolis Algorithms.- 8.1 The Metropolis Sampler.- 8.2 Convergence Theorems.- 8.3 Best Constants.- 8.4 About Visiting Schemes.- 8.4.1 Systematic Sweep Strategies.- 8.4.2 The Influence of Proposal Matrices.- 8.5 The Metropolis Algorithm in Combinatorial Optimization.- 8.6 Generalizations and Modifications.- 8.6.1 Metropolis-Hastings Algorithms.- 8.6.2 Threshold Random Search.- 9. Alternative Approaches.- 9.1 Second Largest Eigenvalues.- 9.1.1 Convergence Reproved.- 9.1.2 Sampling and Second Largest Eigenvalues.- 9.1.3 Continuous Time and Space.- 10. Parallel Algorithms.- 10.1 Partially Parallel Algorithms.- 10.1.1 Synchroneous Updating on Independent Sets.- 10.1.2 The Swendson-Wang Algorithm.- 10.2 Synchroneous Algorithms.- 10.2.1 Introduction.- 10.2.2 Invariant Distributions and Convergence.- 10.2.3 Support of the Limit Distribution.- 10.3 Synchroneous Algorithms and Reversibility.- 10.3.1 Preliminaries.- 10.3.2 Invariance and Reversibility.- 10.3.3 Final Remarks.- IV. Texture Analysis.- 11. Partitioning.- 11.1 Introduction.- 11.2 How to Tell Textures Apart.- 11.3 Features.- 11.4 Bayesian Texture Segmentation.- 11.4.1 The Features.- 11.4.2 The Kolmogorov-Smirnov Distance.- 11.4.3 A Partition Model.- 11.4.4 Optimization.- 11.4.5 A Boundary Model.- 11.5 Julesz’s Conjecture.- 11.5.1 Introduction.- 11.5.2 Point Processes.- 12. Texture Models and Classification.- 12.1 Introduction.- 12.2 Texture Models.- 12.2.1 The—-Model.- 12.2.2 The Autobinomial Model.- 12.2.3 Automodels.- 12.3 Texture Synthesis.- 12.4 Texture Classification.- 12.4.1 General Remarks.- 12.4.2 Contextual Classification.- 12.4.3 MPM Methods.- V. Parameter Estimation.- 13. Maximum Likelihood Estimators.- 13.1 Introduction.- 13.2 The Likelihood Function.- 13.3 Objective Functions.- 13.4 Asymptotic Consistency.- 14. Spacial ML Estimation.- 14.1 Introduction.- 14.2 Increasing Observation Windows.- 14.3 The Pseudolikelihood Method.- 14.4 The Maximum Likelihood Method.- 14.5 Computation of ML Estimators.- 14.6 Partially Observed Data.- VI. Supplement.- 15. A Glance at Neural Networks.- 15.1 Introduction.- 15.2 Boltzmann Machines.- 15.3 A Learning Rule.- 16. Mixed Applications.- 16.1 Motion.- 16.2 Tomographic Image Reconstruction.- 16.3 Biological Shape.- VII. Appendix.- A. Simulation of Random Variables.- A.1 Pseudo-random Numbers.- A.2 Discrete Random Variables.- A.3 Local Gibbs Samplers.- A.4 Further Distributions.- A.4.1 Binomial Variables.- A.4.2 Poisson Variables.- A.4.3 Gaussian Variables.- A.4.4 The Rejection Method.- A.4.5 The Polar Method.- B. The Perron-Frobenius Theorem.- C. Concave Functions.- D. A Global Convergence Theorem for Descent Algorithms.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)