Imagined Worlds / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$21.00
Used and New from Other Sellers
Used and New from Other Sellers
from $1.99
Usually ships in 1-2 business days
(Save 90%)
Other sellers (Paperback)
  • All (36) from $1.99   
  • New (9) from $6.42   
  • Used (27) from $1.99   

Overview

Imagine a world where whole epochs will pass, cultures rise and fall, between a telephone call and the reply. Think of the human race multiplying 500-million fold, or evolving new, distinct species. Consider the technology of space colonization, computer-assisted reproduction, the "Martian potato." One hundred years after H. G. Wells visited the future in The Time Machine, Freeman Dyson marshals his uncommon gifts as a scientist and storyteller to take us once more to that ever-closer, ever-receding time to come.

Since Disturbing the Universe, the book that first brought him international renown, Freeman Dyson has been helping us see ourselves and our world from a scientist's point of view. In Imagined Worlds he brings this perspective to a speculative future to show us where science and technology, real and imagined, may be taking us. The stories he tells--about "Napoleonic" versus "Tolstoyan" styles of doing science; the coming era of radioneurology and radiotelepathy; the works of writers from Aldous Huxley to Michael Crichton to William Blake; Samuel Gompers and the American labor movement--come from science, science fiction, and history. Sharing in the joy and gloom of these sources, Dyson seeks out the lessons we must learn from all three if we are to understand our future and guide it in hopeful directions.

Whether looking at the Gaia theory or the future of nuclear weapons, science fiction or the dangers of "science worship," sea-going kayaks or the Pluto Express, Dyson is concerned with ethics, with how we might mitigate the evil consequences of technology and enhance the good. At the heart of it all is the belief once expressed by the biologist J. B. S. Haldane, that progress in science will bring enormous confusion and misery to humankind unless it is accompanied by progress in ethics.

Read More Show Less

Editorial Reviews

The New Yorker
This is an extraordinary book, written in the wisdom of old age but with the hopeful courage of a man whose commitment to science, if not necessarily to its products, has kept him young.
New York Review of Books

Imagined Worlds makes illuminating criticisms of what [Dyson] calls 'ideologically driven' technologies, which, because they symbolize national pride, are obliged to succeed...Ideologically driven technologies, Dyson argues, discourage the rigorous experimentation without which no technology can properly evolve.
— Timothy Ferris

Times Higher Education Supplement

Freeman Dyson is one of the last survivors of the heroic age of theoretical physics and contributed greatly to the standard theory of quantum electrodynamics. However...he does not suffer from tunnel vision. His imagination embraces the entire cosmos and all the possibilities of future technology...Imagined Worlds is one of those mind-stretching books that any intelligent reader can enjoy.
— Arthur C. Clarke

Nature

Dyson has a startlingly profound imagination, a willingness to take ideas as far as they can possibly go...In this book he provides a fascinatingly plausible view of artificial telepathy. He has helped to design extraordinary spaceships and advised the Pentagon on wild (and no doubt occasionally woolly) weapons. Best of all, from the science-fiction writer's point of view, he admires science-fiction writers. This book is, in part, a tribute to science-fiction; it is an attempt not to predict the future, but rather, through imagination, to bring some of its potential to life.
— Oliver Morton

Natural History

In his new volume, Imagined Worlds, Freeman Dyson, following in the tradition of two of his heroes, novelist H. G. Wells and biologist J. B. S. Haldane, gives us a cautionary vision of where science and technology are taking us in the next century...Dyson's book is a fascinating romp through possible futures.
— Steven J. Dick

London Review of Books

[A] remarkable book.
— John Leslie

Toronto Globe & Mail
Dyson, not just a distinguished scientist, but a fine writer about science...has produced a fascinating speculative work about future scientific developments--near- and far-future--and their likely impact on us.
Sunday Telegraph

[Dyson] constantly surprises and challenges us with his views...[His] independence of mind and his learning make his views on the future well worth reading. At first sight, Imagined Worlds may seem thin and insubstantial, but it actually contains more rewarding insights than most books 10 times its length.
— Graham Farmelo

England) The Guardian (Manchester
[A] marvellous little book.
— Tim Radford
Financial Times [UK]

One of the books I enjoyed most last year...was Freeman Dyson's Imagined Worlds, in which the famed Princeton scientist speculated on the likely evolution of humanity over the next 10, 100, 1,000 10,000, 100,000 and 1 million years...Imagined Worlds...deserves to be read for its elegance and sagacity.
— Michael Thompson-Noel

Washington Post Book World

As well as mind-boggling speculations [on our future], Imagined Worlds includes some good discussions of how science and technology relate to politics and ethics...The future? Freeman Dyson has it figured out.
— Rudy Rucker

Booklist
Thanks to new technologies, researchers can see much farther into the galaxies, much deeper into the genetic structure of life, and more clearly into the heart of the atom than ever before. But envisioning our cultural future still requires the kind of probing, reflective human imagination we see at work in these pages. As this distinguished scientist contemplates a world in which genetic engineers create superbabies and pet dinosaurs, in which space colonies raise potatoes on Mars, in which radiotelepathy allows humans to communicate with dolphins and eagles, he weighs fear against hope...With a rare breadth of literary and historical knowledge and with a wonderful lucidity of style, Dyson converts science from the intellectual property of specialists into a meaningful concern for everyone with a stake in our cultural future.
Discover
Freeman Dyson is an expert rambler. Four or five digressions into an essay, just as you think he's lost his trail, he finds it again around the next bend...[He] describes himself as a 'problem solver,' drawn butterfly-like to nuclear energy, rocket propulsion, quantum electrodynamics, and astronomy, among other fields. This propensity serves his readers well. Dyson is not merely a scientist who can write but a scientist who thinks like a writer. In Imagined Worlds, he trains his thoughts on the world that science and technology are creating, showing how 'Tolstoyan science' (small and cheap) is preferable to 'Napoleonic science' (big and expensive).
Washington Times

Freeman Dyson...[is] brilliant and admirable: a physicist (now retired) of considerable accomplishment and a storyteller of delightful humanity and skill.
— Philip Gold

New Statesman

The world needs the kind of wisdom that Freeman Dyson has accumulated after a lifetime of theoretical physics at Cambridge and Princeton, and his contributions to the nuclear test ban treaty.
— Colin Tudge

Boston Sunday Globe

One of the more daring theories in today's cosmology is that at the creation of our universe an infinite number of others were also brought into being, but that none can communicate with any other. Be that as it may, whenever I am in the presence of Freeman Dyson, a physicist and professor emeritus at the Institute for Advanced Studies in Princeton, I have the uncanny feeling that he is able, after all, to look around the corner into some of those other worlds from which we are cut off. Dyson claims to be a mathematical physicist interested in anatomy. But from his many writings, we know better. He is interested in any question whatever that might have a scientific solution, and in any imaginative idea that may help to anticipate the future...[E]ven while readers will disagree with this or that point, they will also most likely be swept up by the ambitious scope of the book, and Dyson's unwavering belief that our benighted species can improve.
— Gerald Holton

New York Review of Books - Timothy Ferris
Freeman Dyson's Imagined Worlds confirms his reputation as one of the world's clearest and most sagacious critics of science and technology--and it's a delight to read as well.
Times Higher Education Supplement - Arthur C. Clarke
Freeman Dyson is one of the true geniuses of our age. His latest book, full of wry wit and profound wisdom, will be of absorbing interest to anyone concerned with the future happiness, and indeed survival, of the human race.
Nature - Oliver Morton
Dyson has a startlingly profound imagination, a willingness to take ideas as far as they can possibly go...In this book he provides a fascinatingly plausible view of artificial telepathy. He has helped to design extraordinary spaceships and advised the Pentagon on wild (and no doubt occasionally woolly) weapons. Best of all, from the science-fiction writer's point of view, he admires science-fiction writers. This book is, in part, a tribute to science-fiction; it is an attempt not to predict the future, but rather, through imagination, to bring some of its potential to life.
Natural History - Steven J. Dick
In his new volume, Imagined Worlds, Freeman Dyson, following in the tradition of two of his heroes, novelist H. G. Wells and biologist J. B. S. Haldane, gives us a cautionary vision of where science and technology are taking us in the next century...Dyson's book is a fascinating romp through possible futures.
London Review of Books - John Leslie
[A] remarkable book.
Sunday Telegraph - Graham Farmelo
[Dyson] constantly surprises and challenges us with his views...[His] independence of mind and his learning make his views on the future well worth reading. At first sight, Imagined Worlds may seem thin and insubstantial, but it actually contains more rewarding insights than most books 10 times its length.
The Guardian (Manchester, England) - Tim Radford
[A] marvellous little book.
Financial Times [UK] - Michael Thompson-Noel
One of the books I enjoyed most last year...was Freeman Dyson's Imagined Worlds, in which the famed Princeton scientist speculated on the likely evolution of humanity over the next 10, 100, 1,000 10,000, 100,000 and 1 million years...Imagined Worlds...deserves to be read for its elegance and sagacity.
Washington Post Book World - Rudy Rucker
As well as mind-boggling speculations [on our future], Imagined Worlds includes some good discussions of how science and technology relate to politics and ethics...The future? Freeman Dyson has it figured out.
Washington Times - Philip Gold
Freeman Dyson...[is] brilliant and admirable: a physicist (now retired) of considerable accomplishment and a storyteller of delightful humanity and skill.
New Statesman - Colin Tudge
The world needs the kind of wisdom that Freeman Dyson has accumulated after a lifetime of theoretical physics at Cambridge and Princeton, and his contributions to the nuclear test ban treaty.
Boston Sunday Globe - Gerald Holton
One of the more daring theories in today's cosmology is that at the creation of our universe an infinite number of others were also brought into being, but that none can communicate with any other. Be that as it may, whenever I am in the presence of Freeman Dyson, a physicist and professor emeritus at the Institute for Advanced Studies in Princeton, I have the uncanny feeling that he is able, after all, to look around the corner into some of those other worlds from which we are cut off. Dyson claims to be a mathematical physicist interested in anatomy. But from his many writings, we know better. He is interested in any question whatever that might have a scientific solution, and in any imaginative idea that may help to anticipate the future...[E]ven while readers will disagree with this or that point, they will also most likely be swept up by the ambitious scope of the book, and Dyson's unwavering belief that our benighted species can improve.
Lynn Margulis
Broadly knowledgeable, thoughtful, and wise, Freeman Dyson the humanist and physicist outlines here futures for the scientific enterprise--ten, one hundred, ten thousand, and a million years from now. Although not a fan of futurology, I found Imagined Worlds fascinating.
Timothy Ferris
Imagined Worlds makes illuminating criticisms of what [Dyson] calls 'ideologically driven' technologies, which, because they symbolize national pride, are obliged to succeed. . . Ideologically driven technologies, Dyson argues, discourage the rigorous experimentation without which no technology can properly evolve. -- New York Review of Books
Publishers Weekly - Publisher's Weekly
Beginning with a rather rambling introduction about his uncle Bruno, his college Trinity, Oxford and the need to look to the requirements of the future, Princeton physicist Dyson gradually picks up the pace, providing an engaging work that combines science "my territory" and science fiction "the landscape of my dreams". Dyson ponders the triumphs and failures of scientists, using real and imagined stories-from the ill-fated Comet jetliner of 1952 to the technological nightmares of H.G. Wells and Huxley-to illustrate the dangers that surface when political ideology and science mix. Politics and economics, argues Dyson, have done much to mar the public image of scientists. Sensitive to the image of scientists as destroyers of life, jobs and the human spirit, he urges the disposal of all nuclear weapons and upbraids his colleagues as "makers of toys for the rich." This book is a warning, with Dyson predicting that current ecological battles will intensify, that inequalities between rich and poor classes and countries will deepen. But there is also hope, when he predicts that the colonization of space will preserve diversity while it decreases friction he does, however, include a formal apology to aliens. Mostly this is a reminder that human consequences and human scale must be considered in the application of science and technology. If the tone can be rather gee-whiz, Dyson's use of science fiction to illustrate and evaluate scientific fact is a refreshing and illuminating tool. Apr.
Library Journal
With the millennium approaching, we can expect a glut of books about life in the 21st century and beyond. For Dyson, though, making predictions is nothing new. Over some 40 years, the honored physicist has written voluminously on future possibilities. The five longish essays in this collection explore future scenarios around the themes of "Stories," "Science," "Technology," "Evolution," and "Ethics." Probably the boldest predictions are in "Evolution," where Dyson looks ahead at several intervals, from ten years to infinity. Among other things, he envisions space colonization, galactic engineering projects, and the evolution of collective consciousness. As intriguing and readable as this book is, many of its ideas can be found in his other works (e.g., From Eros to Gaia, LJ 7/92). Libraries already owning a sampling of his writings can consider this an optional purchase. [Dyson is the father of computer guru Esther Dyson, and his son George is the author of Darwin Among the Machines, out this May from Helix.Ed.]Gregg Sapp, Univ. of Miami Lib., Coral Gables, Fl.
Kirkus Reviews
A leading scientist speculates on far-future scientific developments and their possible impact on the human condition.

Dyson (From Eros to Gaia, 1992, etc.) points out that our culture has apparently lost its long-range vision. Drawing on a fascinating cross-section of scientific and technological history, the professor emeritus at Princeton's Institute for Advanced Study lays the groundwork for a longer view, with a special interest in making the case for what has been called "small science." He argues that massive projects with politically imposed deadlines (e.g., nuclear power plants) are incapable of developing naturally, because any failure is likely to be so massive that it brings all progress to a stop. When a smaller project fails, others can learn from it and build something better. Dyson contrasts two scientific styles: the Napoleonic, with huge teams and enormous budgets, under dictatorial supervision, and the Tolstoyan, in which creative anarchy is the rule. The Tolstoyan can thrive in times when tight budgets force such Napoleonic projects as the Superconducting Supercollidor onto the scrap heap. Looking ahead, Dyson suspects that the greatest surprises will come from the biological sciences. Genetic engineering is barely in its infancy; the visions of Jurassic Park or Brave New World could well become realities within a few centuries. Dyson bravely peers into even more distant vistas, to eras normally the province of science fiction; a million years in the future, the human race is likely to be altered almost beyond recognition—especially if a significant fraction of the population moves off Earth into environments that we can barely imagine. Finally, Dyson examines the interaction between scientific progress and social justice, and asks to what extent science should inquire into the application of its discoveries. At every turn, he illustrates his subject with reference to a wide range of writers and philosophers, making the book a delight to read.

Essential reading for anyone who looks beyond the coming millennium.

Read More Show Less

Product Details

  • ISBN-13: 9780674539099
  • Publisher: Harvard University Press
  • Publication date: 9/15/1998
  • Series: Jerusalem-Harvard Lectures Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 226
  • Sales rank: 1,013,421
  • Product dimensions: 0.48 (w) x 5.50 (h) x 8.50 (d)

Meet the Author

Freeman Dyson is Professor Emeritus in the School of Natural Sciences, Institute for Advanced Study, Princeton.
Read More Show Less

Read an Excerpt



CHAPTER ONE

Successful technologies often begin as hobbies. Jacques Cousteau invented scuba diving because he enjoyed exploring caves. The Wright brothers invented flying as a relief from the monotony of their normal business of selling and repairing bicycles. A little earlier, the bicycle and the automobile began as recreational vehicles, as means for people of leisure to explore the countryside, before smooth roads existed to make riding and driving efficient. In all these technologies, the pioneers were spending their money and risking their lives for nothing more substantial than fun. Scuba diving is fun, flying is fun, riding bicycles and driving cars are fun, especially in the early days when nobody else is doing it. Even today, when each of these four hobbies has grown into a huge industry, when legal regulations are enforced to reduce the risks as far as possible, sport and recreation are still supplying much of the motivation for pushing the technologies ahead.

The history of flying is a good example to look at in detail for insight into the interaction of technology with human affairs, because two radically different technologies were competing for survival—in the beginning they were called heavier-than-air and lighter-than-air. The airplane and the airship were not only physically different in shape and size but also sociologically different. The airplane grew out of dreams of personal adventure. The airship grew out of dreams of empire. The image in the minds of airplane-builders was a bird. The image in the minds of airship-builders was an oceanliner.

We are lucky to have a vividpicture of the creative phases of these technologies, written by a man who was deeply involved in both and was also a gifted writer, Nevil Shute Norway. Before he became the famous novelist Nevil Shute—author of Pied Piper, A Town like Alice, On the Beach, and other wonderful stories—he was an aeronautical engineer working professionally on the design of airplanes and airships. He wrote an autobiography with the title Slide Rule, describing his life as an engineer.

Norway did not start out with any bias for airplanes and against airships. He worked on both with equal dedication, and he was particularly proud of his part in the design of the airship R100. He worked on it for six years, from the moment of conception in 1924 to the delivery in 1930, and flew on its triumphant maiden voyage in 1930, from London to Montreal and back. From a technical point of view, airships then had many advantages over airplanes, and the R100 was a technical success. But Norway saw clearly that the fate of airships and airplanes did not depend on technical factors alone. Even before he became a professional writer, he was more interested in people than in nuts and bolts. He saw and recorded the human factors that made the building of airplanes fun and made the building of airships a nightmare.

After finishing the R100, Norway started a company of his own, Airspeed Limited. It was one of the hundreds of small companies that were inventing and building and selling airplanes in the 1920s and 30s. Norway estimated that 100,000 different varieties of airplane were flown during those years. All over the world, enthusiastic inventors were selling airplanes to intrepid pilots and to fledgling airlines. Many of the pilots crashed and many of the airlines became bankrupt. Out of 100,000 types of airplane, about 100 survived to form the basis of modern aviation. The evolution of the airplane was a strictly Darwinian process in which almost all the varieties of airplane failed, just as almost all species of animal become extinct. Because of the rigorous selection, the few surviving airplanes are astonishingly reliable, economical, and safe.

The Darwinian process is ruthless, because it depends upon failure. It worked well in the evolution of airplanes because the airplanes were small, the companies that built them were small, and the costs of failure in money and lives were tolerable. Planes crashed, pilots were killed, and investors were ruined, but the scale of the losses was not large enough to halt the process of evolution. After the crash, new pilots and new investors would always appear with new dreams of glory. And so the selection process continued, weeding out the unfit, until airplanes and companies had grown so large that further weeding was officially discouraged. Norway's company was one of the few that survived the weeding and became commercially profitable. As a result, it was bought out and became a division of De Havilland, losing the freedom to make its own decisions and take its own risks. Even before De Havilland took over the company, Norway decided that the business was no longer fun. He stopped building airplanes and started his new career as a novelist.

The evolution of airships was a different story, dominated by politicians rather than by inventors. British politicians in the 1920s were acutely aware that the century of world-wide British hegemony based upon sea power had come to an end. The British Empire was still the biggest in the world but could no longer rely on the Royal Navy to hold it together. Most of the leading politicians, both Conservative and Labor, still had dreams of empire. They were told by their military and political advisers that in the modern world air power was replacing sea power as the emblem of greatness. So they looked to air power as the wave of the future that would keep Britain on top of the world. And in this context it was natural for them to think of airships rather than airplanes as the vehicles of imperial authority. Airships were superficially like oceanliners, big and visually impressive. Airships could fly nonstop from one end of the empire to the other. Important politicians could fly in airships from remote dominions to meetings in London without being forced to neglect their domestic constituencies for a month. In contrast, airplanes were small, noisy, and ugly, altogether unworthy of such a lofty purpose. Airplanes at that time could not routinely fly over oceans. They could not stay aloft for long and were everywhere dependent on local bases. Airplanes were useful for fighting local battles, but not for administering a worldwide empire.

One of the politicians most obsessed with airships was the Labor Peer Lord Thompson, Secretary of State for Air in the Labor governments of 1924 and 1929. Lord Thompson was the driving force behind the project to build the R101 airship at the government-owned Royal Airship Works at Cardington. Being a socialist as well as an imperialist, he insisted that the government factory get the job. But as a compromise to keep the Conservative opposition happy, he arranged for a sister ship, the R100, to be built at the same time by the private firm Vickers Limited. The R101 and R100 were to be the flagships of the British Empire in the new era. The R101, being larger, would fly nonstop from England to India and perhaps later to Australia. The R100, a more modest enterprise, would provide regular service over the Atlantic between England and Canada. Norway, from his position in the team of engineers designing the R100, had a front-seat view of the fate of both airships.

The R101 project was from the beginning driven by ideology rather than by common sense. At all costs, the R101 had to be the largest airship in the world, and at all costs it had to be ready to fly to India by a fixed date in October 1930, when Lord Thompson himself would embark on its maiden voyage to Karachi and back, returning just in time to attend an Imperial Conference in London. His dramatic arrival at the conference by airship, bearing fresh flowers from India, would demonstrate to an admiring world the greatness of Britain and the Empire, and incidentally demonstrate the superiority of socialist industry and of Lord Thompson himself. The huge size and the fixed date were a fatal combination. The technical problems of sealing enormous gasbags so that they should not leak were never solved. There was no time to give the ship adequate shake-down trials before the voyage to India. It finally took off on its maiden voyage, soaking wet in foul weather, with Lord Thompson and his several thousand pounds of lordly baggage on board. The ship had barely enough lift to rise above its mooring-mast. Eight hours later it crashed and burned on a field in northern France. Of the fifty-four people on board, six survived. Lord Thompson was not among them.

Meanwhile, the R100, with Norway's help, had been built in a more reasonable manner. Its gasbags did not leak, and it had an adequate margin of lift to carry its designed pay-load. The R100 completed its maiden voyage to Montreal and back without disaster, seven weeks before the R101 left England. But Norway found the voyage far from reassuring. He reports that the R100 was violently tossed around in a local thunderstorm over Canada and was lucky to have avoided being torn apart. He did not judge it safe enough for regular passenger service. The question whether it was safe enough became moot after the R101 disaster. After one such disaster, no passengers would be likely to volunteer for another. The R100 was quietly dismantled and the pieces sold for scrap. The era of imperial airships had come to an end.

The announced purpose of the R100 was to provide a reliable passenger service between England and Canada, arriving and leaving once a week. After the airship failed, Lord Cunard, the owner of the Cunard shipping company, asked his engineers what it would take to provide a weekly service across the Atlantic using only two oceanliners. At that time it took seven or eight days for a ship to cross the Atlantic, so that a weekly service needed at least three ships. To do it with two ships would require crossing in five days, with two days margin for bad weather, loading, and unloading. The Cunard engineers designed the Queen Mary and the Queen Elizabeth to cross in five days. To do this economically, because of the way wave-drag scales with speed and size, the two ships had to be substantially larger than other oceanliners. Lord Cunard felt confident that the business of transporting passengers by ship could remain profitable for a few more decades, and he ordered the ships to be built.

In due course, after the interruption caused by the second world war, they were carrying passengers profitably across the ocean and incidentally breaking speed records. The British public was proud of these ships, which regularly won the famous Blue Ribbon for the fastest Atlantic crossing. The public imagined that the ships were designed to win the Blue Ribbon, but Lord Cunard said the public misunderstood the purpose of the ships completely. He said his purpose was always to build the smallest and slowest ships that could do a regular weekly service. It was just an unfortunate accident that to do this job you had to break records. The ships continued their weekly sailings profitably for many years, until the Boeing 707 put them out of business.

While oceanliners were still enjoying their heyday, before the triumph of the Boeing 707, another tragedy of ideologically driven technology occurred. This was the tragedy of the Comet jetliner. During World War II the De Havilland company had built bombers and jet fighters and acquired an appetite for bigger things. After the war, the company went ahead with the design of the Comet, a commercial jet that could fly twice as fast as the propeller-driven transport planes of that era. At the same time, the British government established the British Overseas Airways Corporation, a state-owned monopoly with responsibility for long-distance air routes. The Empire was disintegrating rapidly, but enough of it remained to inspire the planners at BOAC with new dreams of glory. Their dream was to deploy a fleet of Comets on the Empire routes that BOAC controlled, from London south to Africa and east to India and Australia.

The dream was seductive because it meant that Britain would move into the jet age five years ahead of the slow-moving Americans. While the Boeing Company hesitated, the Comets would be flying. The Comets would display to the world the superiority of British technology, and incidentally demonstrate that the Empire, now renamed the Commonwealth, was still alive. After the BOAC Comets had shown the way, other airlines all over the world would be placing orders with De Havilland. The dreams that inspired the Comet were the same dreams that inspired the R101 twenty years earlier. The heirs of Lord Thompson had learned little from his fate.

The Comet enterprise made the same mistake as the R101, pushing ahead into a difficult and demanding technology with a politically dictated time-table. The decision to rush the Comet into service in 1952 was driven by the political imperative of staying five years ahead of the Americans. One man foresaw the disaster that was coming. Nevil Shute, no longer an aeronautical engineer but a well-informed bystander, published in 1948 a novel with the title No Highway, which described how political pressures could push an unsafe airplane into service. The novel tells the story of a disaster that is remarkably similar to the Comet disasters that happened four years later.

The fatal flaw of the Comet was a concentration of stress at the corners of the windows. The stress caused the metal skin of the plane to crack and tear open. The cracking occurred only at high altitudes when the plane was fully pressurized. The result was a disintegration of the plane and strewing of wreckage over wide areas, leaving no clear evidence of the cause. Two planes were destroyed in this way, one over India and one over Africa, killing everybody on board. After the second crash, the Comets stopped flying. For five years no jetliners flew, until the Americans were ready with their reliable and thoroughly tested Boeing 707. It took a hundred deaths to stop the Comets from flying, twice as many as it took to stop the airships. If the Secretary of State for Air had been on board the first Comet when it crashed, the second crash might not have been necessary.

Nevil Shute explains how it happened that the R101 and the Comets were allowed to carry passengers without adequate flight-testing. It happened because of a clash of two cultures, the culture of politics and the culture of engineering. Politicians were making crucial decisions about technical matters which they did not understand. The job of a senior politician is to make decisions. Political decisions are often made on the basis of inadequate knowledge, and usually without doing much harm. In the culture of politics, a leader gains respect by saying: "The buck stops here." To take a chance of making a bad decision is better than to be indecisive. The culture of engineering is different. An engineer gains respect by saying: "Better safe than sorry." Engineers are trained to look for weak points in a design—to warn of potential disaster. When politicians are in charge of an engineering venture, the two cultures clash. When the venture involves machines that fly in the air, a clash tends to result in a crash.

Aviation is the branch of engineering that is least forgiving of mistakes. But from a wider point of view, unforgivingness may be a virtue. In the long view of history, the victims of the R101 and the Comets did not die in vain. They left as the legacy of their tragedy the extraordinarily safe and reliable airplanes that now fly every day across continents and oceans all over the world. Without the harsh lessons of disaster and death, the modern jetliner would not have evolved.

My friend Albert Hirschman has found other places where unforgivingness is a virtue. He is an economist who has spent much of his life studying Latin American societies and giving advice to their governments. He has also given advice to newly independent countries in Africa. He is often asked by the leaders of poor countries, "Should we put our limited resources into roads or into airlines?" When this question is asked, the natural impulse of an economist is to say "roads," because the money spent on roads provides jobs for local people, and the roads benefit all classes of society. In contrast, the building of a national airline requires the import of foreign technology, and the airline benefits only the minority of citizens who can afford to use it. Nevertheless, long experience in Africa and Latin America has taught Hirschman that "roads" is usually the wrong answer. In the real world, roads have several disadvantages. The money assigned to road-building tends to fall into the hands of corrupt local officials. Roads are easier to build than to maintain. And when, as usually happens, the new roads decay after a few years, the decay is gradual and does not create a major scandal. The end-result of road-building is that life continues as before. The economist who said "roads" has achieved little except a small increase in the wealth and power of local officials.

Contrast this with the real-world effect of building a national airline. After the money is spent, the country is left with some expensive airplanes, some expensive airports, and some expensive modern equipment. The foreign technicians have left and local people must be trained to operate the system. Unlike roads, airplanes do not decay gracefully. A crash of an airliner is a highly visible event and brings unacceptable loss of prestige to the rulers of the country. The victims tend to be people of wealth and influence, and their deaths do not pass unnoticed. The rulers have no choice. Once they own an airline, they are compelled to see to it that the airline is competently run. They are forced to create a cadre of highly motivated people who maintain the machines, come to work on time, and take pride in their technical skills. As a result, the airline brings to the country indirect benefits that are larger than its direct economic value. It creates a substantial body of citizens accustomed to strict industrial discipline and imbued with a modern work ethic. And these citizens will in time find other useful things to do with their skills besides taking care of airplanes. In this paradoxical way, the unforgivingness of aviation makes it the best school for teaching a traditional society how to modernize.

This is not the first time that an unforgiving technology has transformed the world and forced traditional societies to change. The role of aviation today is similar to the role of sailing ships in the preindustrial world. King Henry VIII of England, the most brutal and most intelligent of English monarchs, destroyer of monasteries and founder of colleges, murderer of wives and composer of madrigals, for whose soul regular prayers are still said at Trinity College Cambridge in gratitude for his largesse, understood that the most effective tool for modernizing England was the creation of a Royal Navy. It was not by accident that the industrial revolution of the eighteenth century began in England, in the island where daily life and economics had been dominated for 300 years by the culture of sailing ships. When the young Tsar Peter the Great of Russia, a kindred spirit to Henry, decided that the time had come to modernize the Russian empire, he prepared himself for the job by going to work as an apprentice in a shipyard.

The R101 and Comet tragedies are examples of the baleful effects of ideology, the ideology in those cases being old-fashioned British imperialism. Today, the British Empire is ancient history, and its ideology is dead. But technologies driven by ideology are likely to run into trouble, even when the ideology is not so outmoded. Another powerful ideology that ran into trouble is nuclear energy. All over the world, after the end of World War II, the ideology of nuclear energy flourished, driven by an intense desire to create something peaceful and useful out of the ruins of Hiroshima and Nagasaki. Scientists and politicians and industrial leaders were equally bewitched by this vision, that the great new force of nature that killed and maimed in war would now make deserts bloom in peace. Nuclear energy was so strange and powerful that it looked like magic. It was easy to believe that this magic could bring wealth and prosperity to poor people all over the earth. So it happened that in all large countries and in many small ones, in democracies and dictatorships, in communist and capitalist societies alike, Atomic Energy Authorities were created to oversee the miracles that nuclear energy was expected to perform. Huge funds were poured into nuclear laboratories in the confident belief that these were sound investments for the future.

I visited Harwell, the main British nuclear research establishment, during the early days of nuclear enthusiasm. The first director of Harwell was Sir John Cockcroft, a first-rate scientist and an honest public servant. I walked around the site with Cockcroft, and we looked up at the massive electric power lines running out of the plant, over our heads and away into the distance. Cockcroft remarked, "The public imagines that the electricity is flowing out of this place into the national grid. When I tell them that it is all flowing the other way, they don't believe me."

There was nothing wrong, and there is still nothing wrong, with using nuclear energy to make electricity. But the rules of the game must be fair, so that nuclear energy competes with other sources of energy and is allowed to fail if it does badly. So long as it is allowed to fail, nuclear energy can do no great harm. But the characteristic feature of an ideologically driven technology is that it is not allowed to fail. And that is why nuclear energy got into trouble. The ideology said that nuclear energy must win. The promoters of nuclear energy believed as a matter of faith that it would be safe and clean and cheap and a blessing to humanity. When evidence to the contrary emerged, the promoters found ways to ignore the evidence. They wrote the rules of the game so that nuclear energy could not lose. The rules for cost-accounting were written so that the cost of nuclear electricity did not include the huge public investments that had been made to develop the technology and to manufacture the fuel. The rules for reactor safety were written so that the type of light-water reactor originally developed by the United States Navy for propelling submarines was by definition safe. The rules for environmental cleanliness were written so that the ultimate disposal of spent fuel and worn-out machinery was left out of consideration. With the rules so written, nuclear energy confirmed the beliefs of its promoters. According to these rules, nuclear energy was indeed cheap and clean and safe.

The people who wrote the rules did not intend to deceive the public. They deceived themselves, and then fell into a habit of suppressing evidence that contradicted their firmly held beliefs. In the end, the ideology of nuclear energy collapsed because the technology that was not allowed to fail was obviously failing. In spite of the government subsidies, nuclear electricity did not become significantly cheaper than electricity made by burning coal and oil. In spite of the declared safety of light-water reactors, accidents occasionally happened. In spite of the environmental advantages of nuclear power plants, disposal of waste fuel remained an unsolved problem. The public, in the end, reacted harshly against nuclear power because obvious facts contradicted the claims of the promoters.

When a technology is allowed to fail in competition with other technologies, the failure is a part of the normal Darwinian process of evolution, leading to improvements and possible later success. When a technology is not allowed to fail, and still it fails, the failure is far more damaging. If nuclear power had been allowed to fail at the beginning, it might well have evolved by now into a better technology which the public would trust and support. There is nothing in the laws of nature that stops us from building better nuclear power plants. We are stopped by deep and justified public distrust. The public distrusts the experts because they claimed to be infallible. The public knows that human beings are fallible. Only people blinded by ideology fall into the trap of believing in their own infallibility.

The tragedy of nuclear fission energy is now almost at an end, so far as the United States is concerned. Nobody wants to build any new fission power plants. But another tragedy is still being played out, the tragedy of nuclear fusion. The promoters of fusion are making the same mistakes that the promoters of fission made thirty years earlier. The promoters are no longer experimenting with a variety of fusion schemes in order to evolve a machine that might win in the marketplace. They long ago decided to concentrate their main effort upon a single device, the Tokamak, which is declared by ideological fiat to be the energy producer for the twenty-first century. The Tokamak was invented in Russia, and its inventors gave it a name that transliterates euphoniously into other languages. All the countries with serious programs of fusion research have built Tokamaks. One of the largest and most expensive is in Princeton. To me it looks like a plumber's nightmare, a dense conglomeration of pipes and coils with no space for anybody to go in and fix it when it needs repairs. But the people who built it believe sincerely that it is an answer to human needs. The various national fusion programs are supposed to converge upon a huge international Tokamak, costing many billions of dollars, which will be the prototype for the fusion power producers of the future. The usual claims are made, that fusion power will be safe and clean, although even the promoters are no longer saying that it will be cheap. The existing fusion programs have stopped the evolution of a new technology that might actually fulfill the hopes of the promoters. What the world needs is a small, compact, flexible fusion technology that could make electricity where and when it is needed. The existing fusion program is leading to a huge source of centralized power, at a price that nobody except a government can afford. It is likely that the existing fusion program will sooner or later collapse as the fission program collapsed, and we can only hope that some more useful form of fusion technology will rise from the wreckage.

My last story about a technology driven by ideology is the story of ice ponds. Ted Taylor was the chief promoter of ice ponds. Of all my friends, he is the one who best combines technical inventiveness with high moral principles. In his youth he was a designer of nuclear weapons at Los Alamos. He later worked in the Department of Defense in Washington, with responsibility for safeguarding nuclear weapon stockpiles. After this exposure to the realities of nuclear-industrial politics, he became an antinuclear activist, resigned from government service, and campaigned publicly for better safeguards against theft of plutonium and other nuclear materials. He decided to devote the rest of his life to developing alternative technologies to replace nuclear energy. The search for a sustainable and environmentally benign source of energy led him to ice ponds.

Ice ponds could be a clean source of energy for refrigeration, in any region where winter night-time

Read More Show Less

Table of Contents

Introduction

Stories

Science

Technology

Evolution

Ethics

Bibliographical Notes

Index

Read More Show Less

Customer Reviews

Average Rating 2
( 3 )
Rating Distribution

5 Star

(0)

4 Star

(1)

3 Star

(0)

2 Star

(0)

1 Star

(2)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 3 Customer Reviews
  • Posted April 24, 2012

    Interesting material but no connection to a central idea and very confusing

    This review is from: Imagined worlds (Jerusalem-Harvard Lectures)(Paperback)
    In this book, Freeman Dyson writes about numerous past scientific developments and attempts to determine what the world will be like in the future because of more advances in science that he thinks will be made. He warns that if people do not accept advances in science, that it will hinder discoveries and eventually lead to the demise of mankind. Dyson structures his book in an unique way to get his point across. He begins with several examples of advances in technology that ended up in being failures. He then goes on to talk about advances in science and how the world has evolved because of these advances. In the end of the book, Dyson explains how he thinks these advances will affect the world hundreds of years from now. In the last few paragraphs, he states that people must accept scientific advances even if they are contrary to their beliefs and morals and compares people who look down upon scientific advancement to the nazis during the Holocaust.

    The way this book is structured makes it interesting and there are some examples of scientific advancements that are quite fascinating. However, its structure is confusing and not effective in revealing Dyson’s point of view or reasons for writing the book. The examples given have no connection with each other and seem to be randomly selected. There seems to be no order to how the book was written. A reader could get just as much out of this book if they were to open it to random pages and reading instead of reading it straight through. Also, Duson is very condemning towards people who do not agree with his beliefs. He states his opinions about controversial issues such as abortion but does not back them up with any evidence. This book would have been much better if Dyson had connected the examples to a central idea and had clearly given his point or supporting his beliefs with evidence and not just throw them on the reader without reasons why they should agree. I would not recommend this book to anyone looking for something to read on their free time.

    Was this review helpful? Yes  No   Report this review
  • Posted April 24, 2012

    Interesting ideas at times but not connected

    Freeman Dyson is an opinionated scientist who shares his view point of the future through what he believes will come in many years ahead paired with examples or details from science fiction. He begins the book with an introduction that covers the changing present through his uncle in Germany, H. G. Well’s The Time Machine, and his beliefs and experiences. Each chapter after the introduction details a completely different topic ranging from failed technology and endeavors to manipulating genes in flies and mice. The information presented in each chapter displays a particular view point of Dyson. However, once he has made that point, he changes the subject to explore a new unrelated concept that he is passionate about. Because of his scientific background, Dyson brings up many topics related to his or another field of science that interests him which he connects to technology or ethics. Overall, the examples that Dyson uses throughout the book are applicable to his main point explained in the last chapter, but he leaves the reader to do that for themselves instead of connecting his ideas. As we continue our scientific and technological progress in our society, Dyson believes that we must let go of “old institutions” constructed by society’s ethics to advance in science.

    Throughout the book Dyson explains many concepts that are interesting. However, because he was trying to determine what the future will bring and how we should adapt for it through these examples, he kept changing topics after only a few paragraphs. He has some interesting view points, but he doesn’t go in depth on any of them except for his end point to change society for science.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 23, 2000

    Excellent essays

    Six essays, adapted from a lecture series, explore a wide range of scientific and technological issues. Dyson uses science fiction -- ranging from _Jurassic Park_ to _The Island of Dr. Moreau_ -- as starting points for his tales, but more importantly brings in his own experience as a scientist, citizen, and parent. Dyson's thoughts on the interaction of science and politics are especially interesting. While not as dense and literary as _Disturbing the Universe,_ it's an excellent read and highly recommended.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing all of 3 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)