Index Analysis: Approach Theory at Work

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.

The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.

Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories.

Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.

1133130025
Index Analysis: Approach Theory at Work

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.

The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.

Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories.

Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.

54.99 In Stock
Index Analysis: Approach Theory at Work

Index Analysis: Approach Theory at Work

by R. Lowen
Index Analysis: Approach Theory at Work

Index Analysis: Approach Theory at Work

by R. Lowen

eBook2015 (2015)

$54.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.

The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.

Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories.

Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.


Product Details

ISBN-13: 9781447164852
Publisher: Springer-Verlag New York, LLC
Publication date: 01/06/2015
Series: Springer Monographs in Mathematics
Sold by: Barnes & Noble
Format: eBook
Pages: 466
File size: 19 MB
Note: This product may take a few minutes to download.

About the Author

Robert Lowen is an author of more than 140 journal publications and four books, Promotor of 16 PhD theses, Founding Editor and Editor-in-Chief of Applied Categorical Structures, Associate Editor of 3 other mathematical journals, Member of the Scientific Committees of national and several international Science Foundations.

Table of Contents

Approach spaces.- Topological and metric approach spaces.- Approach invariants.- Index analysis.- Uniform gauge spaces.- Extensions of spaces and morphisms.- Approach theory meets Topology.- Approach theory meets Functional analysis.- Approach theory meets Probability.- Approach theory meets Hyperspaces.- Approach theory meets DCPO’s and Domains.- Categorical considerations.
From the B&N Reads Blog

Customer Reviews