Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors

Hardcover (Print)
Buy New
Buy New from BN.com
$175.57
Used and New from Other Sellers
Used and New from Other Sellers
from $89.49
Usually ships in 1-2 business days
(Save 52%)
Other sellers (Hardcover)
  • All (4) from $89.49   
  • New (3) from $89.49   
  • Used (1) from $197.83   

Overview

This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Read More Show Less

Editorial Reviews

From the Publisher
"The book is written clearly and concisely. It is well structured, and the material is presented in a rigorous, coherent fashion...[it] constitutes an excellent resource for researchers and advanced graduate students in applied mathematics, dynamical systems, nonlinear dynamics, and computational mechanics. Its acquisition by libraries is strongly recommended." Applied Mechanics Reviews
Read More Show Less

Product Details

  • ISBN-13: 9780521632041
  • Publisher: Cambridge University Press
  • Publication date: 5/28/2009
  • Series: Texts in Applied Mathematics Series , #28
  • Pages: 480
  • Product dimensions: 5.98 (w) x 8.98 (h) x 1.18 (d)

Table of Contents

Part I. Functional Analysis: 1. Banach and Hilbert spaces; 2. Ordinary differential equations; 3. Linear operators; 4. Dual spaces; 5. Sobolev spaces; Part II. Existence and Uniqueness Theory: 6. The Laplacian; 7. Weak solutions of linear parabolic equations; 8. Nonlinear reaction-diffusion equations; 9. The Navier-Stokes equations existence and uniqueness; Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties; 11. The global attractor for reaction-diffusion equations; 12. The global attractor for the Navier-Stokes equations; 13. Finite-dimensional attractors: theory and examples; Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes; 15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds; 16. Finite-dimensional dynamics III, a direct approach; 17. The Kuramoto-Sivashinsky equation; Appendix A. Sobolev spaces of periodic functions; Appendix B. Bounding the fractal dimension using the decay of volume elements.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)