Influence Of Functional Components On The Film Formation Of Colloidal Dispersions.

Overview

A number of colloidal dispersions were synthesized to advance knowledge and gain understanding regarding interactions between individual components and for elucidation of complex processes governing their film formation. These studies show that for methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal dispersions, the presence of functional components significantly affects film formation. The incorporation of polyvinyl alcohol (PVOH) into pMMA/nBA colloidal dispersions creates competing environments between ...
See more details below
Other sellers (Paperback)
  • All (2) from $71.96   
  • New (2) from $71.96   
Sending request ...

More About This Book

Overview

A number of colloidal dispersions were synthesized to advance knowledge and gain understanding regarding interactions between individual components and for elucidation of complex processes governing their film formation. These studies show that for methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal dispersions, the presence of functional components significantly affects film formation. The incorporation of polyvinyl alcohol (PVOH) into pMMA/nBA colloidal dispersions creates competing environments between the copolymer particle surfaces, aqueous phases, and dispersing agents which results in migration with self-induced stratification occurring during coalescence. pMMA/nBA/PVOH films stratify to form sodium dodecyl sulfate (SDS) rich film-air (F-A) interfaces, and the --SO3- moieties exhibit preferential parallel orientation with respect to the surface. At the same time, the bulk of the film is dominated by intramolecular hydrogen bonding between the PVOH phase and the copolymer matrix. This behavior is attributed to significant interactions between PVOH and pMMA/nBA resulting in limited mobility of PVOH. Also, colloidal dispersions of poly(methyl methacrylate/n-butyl acrylate) in the presence of methylene bisacrylamide (MBA), n-(hydroxyl methyl)-acrylamide (HAM), and methacrylic acid (MA) crosslinkers have significant influence on the mobility of individual components and their stratification during and after coalescence. Utilizing thermomechanical and spectroscopic analytical tools, these studies show that physical and/or chemical crosslinking, which is a function of temperature, significantly alters interactions among the film components. While the presence of physical crosslinks significantly affects the mechanical strength of polymer networks at lower temperatures while chemical crosslinks are effective at elevated temperatures. Furthermore, the degree of crosslinking also influences stratification of selected components. These studies also examine the role of nano-SiO2 particles during colloidal synthesis of poly(methyl methacrylate/n-butyl acrylate) (pMMA/nBA) and their effect on the polydispersity index (PDI). Due to the presence of defects on the surface of SiO2 nanoparticles, these entities are capable of controlling the propagation of free radicals. In contrast to previous assessments that SiO2 nanoparticles serve as a loci of polymerization, SiO2 nanoparticles adsorb on the exterior of surfactant micelles where they couple with carbon based propagating radicals in the oil phase and the hydroxyl radicals produced in the aqueous phase. The control of carbon based radicals as well as the trapping of highly reactive hydroxyl radicals is shown to lower the PDI of pMMA/nBA from 15 to 93%, depending upon the initiator as well as reaction conditions. Finally, the creation of bioactive surfaces has garnered much interest due to potential applications in the medical industry. Many well-known methods used for the creation of bioactive surfaces utilize post modification techniques. With this in mind, we focused on the creation of bioactive surfaces with stimuli-responsive character without the need for further modification. These studies explored the concept of controlling inter/intramolecular interactions of multicomponent systems during the film formation process to create tailor-made surfaces of colloidal films. By utilizing the ionization of aspartic acid (Asp) by controlling the pH of poly-(methyl methacrylate/n-butyl acrylate) (pMMA/nBA) colloidal dispersions, bioactive surfaces could not only be created but also controlled. At acidic pHs, a surfactant rich layer could be observed at the film-air interface, while at...
Read More Show Less

Product Details

  • ISBN-13: 9781243633163
  • Publisher: BiblioLabsII
  • Publication date: 9/4/2011
  • Pages: 122
  • Product dimensions: 7.44 (w) x 9.69 (h) x 0.26 (d)

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)