Information Dynamics: Foundations and Applications

Overview

This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems ...

See more details below
Paperback (Softcover reprint of the original 1st ed. 2001)
$71.26
BN.com price
(Save 16%)$84.95 List Price
Other sellers (Paperback)
  • All (4) from $78.84   
  • New (3) from $78.84   
  • Used (1) from $115.50   
Sending request ...

Overview

This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems modeling.

Read More Show Less

Product Details

  • ISBN-13: 9781461265108
  • Publisher: Springer New York
  • Publication date: 12/31/2013
  • Edition description: Softcover reprint of the original 1st ed. 2001
  • Pages: 281
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.63 (d)

Table of Contents

l Introduction.- 2 Dynamical Systems: An Overview 7.- 2.1 Deterministic Dynamical Systems.- 2.1.1 Fundamental Concepts.- 2.1.2 Attractors.- 2.1.3 Strange Attractors: Chaotic Dynamics.- 2.1.4 Quantitative Description of Chaos.- 2.1.5 Chaotic Dynamical Systems.- 2.2 Shastic Dynamical Systems.- 2.2.1 Gaussian White Noise.- 2.2.2 Markov Processes.- 2.2.3 Linear and Nonlinear Shastic Dynamics.- 2.3 Statistical Time-Series Analysis.- 2.3.1 Nonstationarity: Slicing Windows.- 2.3.2 Linear Statistical Inference: Correlations and Power Spectrum.- 2.3.3 Linear Filter.- 3 Statistical Structure Extraction in Dynamical Systems: Parametric Formulation.- 3.1 Basic Concepts of Information Theory.- 3.2 Parametric Estimation : Maximum-Likelihood Principle.- 3.2.1 Bayesian Estimation.- 3.2.2 Maximum Likelihood.- 3.2.3 Maximum-Entropy Principle.- 3.2.4 Minimum Kullback-Leibler Entropy.- 3.3 Linear Models.- 3.4 Nonlinear Models.- 3.4.1 Feedforward Neural Networks.- 3.4.2 Recurrent Neural Networks.- 3.5 Density Estimation.- 3.6 Information-Theoretic Approach to Time-Series Modeling: Redundancy Extraction.- 3.6.1 Generalities.- 3.6.2 Unsupervised Learning : Independent Component Analysis for Univariate Time Series.- 3.6.3 Unsupervised Learning: Independent Component Analysis for Multivariate Time Series.- 3.6.4 Supervised Learning : Maximum-Likelihood.- 4 Applications: Parametric Characterization of Time Series.- 4.1 Feedforward Learning : Chaotic Dynamics.- 4.2 Recurrent Learning : Chaotic Dynamics.- 4.3 Dynamical Overtraining and Lyapunov Penalty Term.- 4.4 Feedforward and Recurrent Learning of Biomedical Data.- 4.5 Unsupervised Redundancy-Extraction-Based Modeling: Chaotic Dynamics.- 4.5.1 Univariate Time Series : Mackey-Glass.- 4.5.2 Multivariate Time Series : Taylor-Couette.- 4.6 Unsupervised Redundancy Extraction Modeling: Biomedical Data.- 5 Statistical Structure Extraction in Dynamical Systems: Nonparametric Formulation.- 5.1 Nonparametric Detection ofStatistical Dependencies in Time Series.- 5.1.1 Introduction and Historical Perspective.- 5.1.2 Statistical Independence Measure.- 5.1.3 Statistical Test: The Surrogates Method.- 5.1.4 Nonstationarity.- 5.1.5 A Qualitative Test of Nonlinearity.- 5.2 Nonparametric Characterization of Dynamics: The Information Flow Concept.- 5.2.1 Introduction and Historical Perspective.- 5.2.2 Information Flow for Finite Partitions.- 5.2.3 Information Flow for Infinitesimal Partition.- 5.3 Information Flow and Coarse Graining.- 5.3.1 Generalized Correlation Functions.- 5.3.2 Distinguishing Different Dynamics.- 6 Applications: Nonparametric Characterization of Time Series.- 6.1 Detecting Nonlinear Correlations in Time Series.- 6.1.1 Test ofNonlinearity.- 6.1.2 Testing Predictability: Artificial Time Series.- 6.1.3 Testing Predictability: Real-World Time Series.- 6.1.4 Data Selection.- 6.1.5 Sensitivity Analysis.- 6.2 Nonparametric Analysis of Time Series : Optimal Delay Selection.- 6.2.1 Nonchaotic Deterministic.- 6.2.2 Linear Shastic.- 6.2.3 Chaotic Deterministic.- 6.3 Determining the Information Flow ofDynamical Systems from Continuous Probability Distributions.- 6.4 Dynamical Characterization ofTime Signals: The Integrated Information Flow.- 6.5 Information Flow and Coarse Graining: Numerical Experiments.- 6.5.1 The Logistic Map.- 6.5.2 White and Colored Noise.- 6.5.3 EEG Signals.- 7 Statistical Structure Extraction in Dynamical Systems: Semiparametric Formulation.- 7.1 Markovian Characterization of Univariate Time Series.- 7.1.1 Measures ofIndependence.- 7.1.2 Markovian Dynamics and Information Flow.- 7.2 Markovian Characterization of Multivariate Time Series.- 7.2.1 Multidimensional Cumulant-Based Measure of Information Flow.- 7.2.2 Nonlinear N-dimensional Markov Models as Approximations ofthe Original Time Series.- 8 Applications: Semiparametric Characterization of Time Series.- 8.1 Univariate Time Series : Artificial Data.- 8.1.1 Autoregressive Models : Linear Correlations.- 8.1.2 Nonlinear Dependencies: Non-Chaos, Chaos, and Noisy Chaos.- 8.2 Univariate Time Series: Real-World Data.- 8.2.1 Monthly Sunspot Numbers.- 8.2.2 The Hidden Dynamics of the Heart Rate Variability.- 8.3 Multivariate Time Series: Artificial Data.- 8.3.1 Autoregressive Time Series.- 8.3.2 Nonlinear Time Series.- 8.3.3 Chaotic Time Series : The Henon Map.- 8.4 Multivariate Time Series : Tumor Detection in EEG Time Series.- 9 Information Processing and Coding in Spatiotemporal Dynamical Systems: Spiking Networks.- 9.1 Spiking Neurons.- 9.1.1 Theoretical Models.- 9.1.2 Rate Coding versus Temporal Coding.- 9.2 Information Processing and Coding in Single Spiking Neurons.- 9.3 Information Processing and Coding in Networks of Spiking Neurons.- 9.4 The Processing and Coding ofDynamical Systems.- 10 Applications: Information Processing and Coding in Spatiotemporal Dynamical Systems.- 10.1 The Binding Problem.- 10.2 Discrimination of Stimulus by Spiking Neural Networks.- 10.2.1 The Task: Visual Stimulus Discrimination.- 10.2.2 The Neural Network: Cortical Architecture.- 10.3 Numerical Experiments.- Epilogue.- Appendix A Chain Rules, Inequalities and Other Useful Theorems in Information Theory.- A.1 Chain Rules.- A.2 Fundamental Inequalities ofInformation Theory.- Appendix B Univariate and Multivariate Cumulants.- Appendix C Information Flow of Chaotic Systems: Thermodynamical Formulation.- Appendix D Generalized Discriminability by the Spike Response Model ofa Single Spiking Neuron: Analytical Results.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)