Information Processing by Neuronal Populations

Overview

Models and concepts of brain function have always been guided and limited by the available techniques and data. This book brings together a multitude of data from different backgrounds. It addresses questions such as: How do different brain areas interact in the process of channelling information? How do neuronal populations encode the information? How are networks formed and separated or associated with other networks? The authors present data at the single cell level both in vitro and in vivo, at the neuronal ...

See more details below
Paperback
$76.58
BN.com price
(Save 9%)$85.00 List Price
Other sellers (Paperback)
  • All (3) from $79.30   
  • New (2) from $79.30   
  • Used (1) from $102.03   
Sending request ...

Overview

Models and concepts of brain function have always been guided and limited by the available techniques and data. This book brings together a multitude of data from different backgrounds. It addresses questions such as: How do different brain areas interact in the process of channelling information? How do neuronal populations encode the information? How are networks formed and separated or associated with other networks? The authors present data at the single cell level both in vitro and in vivo, at the neuronal population level in vivo comparing field potentials (EEGs) in different brain areas, and also present data from spike recordings from identified neuronal populations during the performance of different tasks. Written for academic researchers and graduate students, the book strives to cover the range of single cell activity analysis to the observation of network activity, and finally to brain area activity and cognitive processes of the brain.

Read More Show Less

Product Details

  • ISBN-13: 9781107411296
  • Publisher: Cambridge University Press
  • Publication date: 10/25/2012
  • Pages: 484
  • Product dimensions: 6.69 (w) x 9.61 (h) x 0.98 (d)

Meet the Author

Christian Hölscher is an assistant Professor at Ulster University in Northern Ireland. He has published widely in international journals on topics of memory formation, synaptic plasticity, neurodegeneration, and information processing in neuronal populations. He was the editor of Neuronal Mechanism of Memory Formation in 2001 that investigated processes of synaptic plasticity that might underlie memory formation.

Matthias Munk is a research scientist at the Max Planck Institute for Brain Research and an assistant Professsor (Privatdozent) at the University of Darmstadt, Germany. He has conducted extensive research in the area of information processing in the visual cortex of primates, using electrophysiological, pharmacological and imaging techniques. He has published his research widely in a range of top scientific journals.

Read More Show Less

Table of Contents

Part I. Introduction: 1. How could populations of neurons encode information? Christian Hölscher; Part II. Organisation of Neuronal Activity in Neuronal Populations: 2. Cellular mechanisms underlying network synchrony in the medial temporal lobe Edward O. Mann and Ole Paulsen; 3. Cell assemblies and serial computation in neural circuits Kenneth D. Harris; 4. Neural population recording in behaving animals: constituents of a neural code for behavioral decisions Robert E. Hampson and Sam A. Deadwyler; 5. Measuring distributed properties of neural representations beyond the decoding of local variables - implications for cognition Adam Johnson, Jadin C. Jackson and A. David Redish; 6. Single-neuron and ensemble contributions to decoding simultaneously recorded spike trains Mark Laubach, Nandakumar S. Narayanan and Eyal Y. Kimchi; Part III. Neuronal Population Information Coding and Plasticity within Brain Areas: 7. Functional roles of Theta and Gamma oscillations in the association and dissociation of neuronal networks in primates and rodents Christian Hölscher; 8. Theta rhythm and bi-directional plasticity in the Hippocampus James Hyman and Michael Hasselmo; 9. Distributed population codes in sensory and memory representations of the neocortex Matthias Munk; 10. The role of neuronal populations in auditory cortex for learning Frank W. Ohl and Henning Scheich; 11. The construction of olfactory representations Thomas A. Cleland; Part IV. Functional Integration of Different Brain Areas in Information Processing and Plasticity: 12. Anatomical, physiological, and pharmacological properties underlying hippocampal sensorimotor integration Brian Bland; 13. A face in the crowd: which groups of neurons encode faces, and how do they interact? Kari L. Hoffman; 14. The role of interactions between prefrontal and visual cortex in learning and memory Kristina J. Nielsen and Gregor Rainer; 15. Gamma-band activity in human MEG during auditory processing Jochen Kaiser and Werner Lutzenberger; Part VI. Disturbances of Population Activity as the Basis of Schizophrenia: 16. Neural co-ordination and psychotic disorganization Andre Fenton; 17. The role of synchronous gamma band activity in schizophrenia Corinna Haenschel; Part VII. Summary and Future Targets: 18. Summary of chapters, conclusion and future targets Christian Hölscher and Matthias Munk.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)