Gift Guide

Injury Biomechanics and Control: Optimal Protection from Impact / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $81.07
Usually ships in 1-2 business days
(Save 37%)
Other sellers (Hardcover)
  • All (7) from $81.07   
  • New (5) from $81.07   
  • Used (2) from $117.43   


With this book as their guide, readers will discover how to design better protective equipment and devices such as helmets, seat belts, and wheelchairs in order to minimize the risk or the extent of injury to people subjected to impact loads. It is based on the theory of optimal shock isolation, first developed in the 1950s to protect missile systems from intensive shock loads.

Using examples from automotive, aviation, and military areas, the authors demonstrate how optimal shock isolation theory enables designers to improve the performance of protective equipment by incorporating control and optimization methods developed for shock isolation systems.

The first part of Injury Biomechanics and Control lays down the engineering foundation, setting forth core principles and techniques, including:

  • Fundamentals of impact and shock isolation systems
  • Basic optimal shock isolation for single-degree-of-freedom systems
  • Optimal shock isolation for multi-degree-of-freedom systems

The second part applies the principles set forth in the first part to solve real-world problems, using simple mathematical models that simulate the mechanical response of human bodies to impact loads in order to optimize shock isolation systems. This book enables scientists, engineers, and students in mechanical, biomechanical, and biomedical engineering to fully realize the potential of shock isolation methods for the development of protective equipment and devices.

Read More Show Less

Product Details

  • ISBN-13: 9780470100158
  • Publisher: Wiley
  • Publication date: 12/2/2009
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 304
  • Product dimensions: 6.30 (w) x 9.30 (h) x 1.00 (d)

Meet the Author

The late Walter D. Pilkey, PhD, was the Morse Professor of Mechanical and Aerospace Engineering, with courtesy positions in Plastic Surgery and Neurosurgery at the University of Virginia. He received his BA, MS, and PhD from Washington State University, Purdue University, and Penn State University, respectively.

Dmitry V. Balandin, Dsc (Physics And Mathematics), is the Chair of Numerical and Functional Analysis at Nizhny Novgorod State University, Nizhny Novgorod, Russia. His areas of expertise include shock isolation, automatic control, and theoretical mechanics. He received his MS, PhD, and DSc, from Nizhny Novgorod State University, Institute for Problems in Mechanics of the USSR Academy of Sciences, and Moscow State University, respectively.

Nikolai N. Bolotnik, Dsc (Physics And Mathematics), is the head of the Laboratory of Robotics and Mechatronics at the Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia. His areas of expertise include optimal control, shock isolation, and robotics. He received his MS, PhD, and DSc degrees from Moscow Institute of Physics and Technology, Institute for Problems in Mechanics of the USSR Academy of Sciences, and Moscow State University, respectively.

Jeff R. Crandall, PhD, received his BA degree from Dartmouth College and his PhD from the University of Virginia, where he is currently a professor in the Department of Mechanical and Aerospace Engineering and Director of the Center for Applied Biomechanics. His research involves characterizing human response and injury during dynamic loading.

Sergey V. Purtsezov, PhD, received his MS and PhD degrees from the Nizhny Novgorod State University, Russia, and is presently a research scientist at the Center for Applied Biomechanics of the University of Virginia. His research interests include shock isolation, measurement, and modeling in biomechanics.

Read More Show Less

Table of Contents




1.1 The Structure of the Book.

1.2 Related Studies.



2.1 Shock Loading: Basic Models and Characteristics.

2.2 Shock Isolation.

2.3 The Isolator as a Control Medium: Active and Passive Isolators.

2.4 Does Isolation of an Object from the Base Always Lead to a Reduction in the Shock Load Transmitted to the Object?.



3.1 Basic Problems.

3.2 Limiting Performance Analysis: Basic Concept and Analytical Results.

3.3 Limiting Performance Analysis: Computational Approach.

3.4 Parametric Optimization.

3.5 Pre-Acting Control for Shock Isolators.

3.6 Best and Worst Disturbance Analyses.



4.1 Optimal Shock Isolation for a Two-Component Viscoelastic Object.

4.2 Optimal Shock Isolation for Three-Component Structures.



5.1 Description of the Model.

5.2 Minimization of the Occupant’s Displacement subject to a Constraint Imposed on the Spinal Compressive Force.

5.3 Spinal Injury Control System with two Shock Isolators.

5.4 MADYMO Simulation for the Limiting Performance Analysis.



6.1 Smart Restraint Systems.

6.2 Basic Concept of Restraint Force Control.

6.3 Limiting Performance Analysis for the Prevention of Thoracic Injuries in a Frontal Car Crash.

6.4 Feedback Control of the Elastic Restraint Force on the Basis of the Two-Mass Thorax Injury Model.

6.5 Conclusions.



7.1 Head Injury Criterion: Historical Perspectives.

7.2 Minimization of the Deceleration Distance for Constrained HIC.

7.3 Minimization of the HIC for Constrained Deceleration Distance.

7.4 Alternative Control Laws.



8.1 Introduction.

8.2 Optimal Shock Isolation of Single-Degree-of-Freedom System.

8.3 Simulation Using MADYMO.

8.4 Discussion.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)