Integral Geometry and Geometric Probability
Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups, or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field.
1141435419
Integral Geometry and Geometric Probability
Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups, or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field.
117.0 In Stock
Integral Geometry and Geometric Probability

Integral Geometry and Geometric Probability

Integral Geometry and Geometric Probability

Integral Geometry and Geometric Probability

Paperback(REV)

$117.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments have proved to be useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups, or probability or differential geometry. It is ideal both as a reference and for those wishing to enter the field.

Product Details

ISBN-13: 9780521523448
Publisher: Beijing World Publishing Corporation (BJWPC)
Publication date: 10/28/2004
Series: Cambridge Mathematical Library
Edition description: REV
Pages: 428
Product dimensions: 6.14(w) x 8.62(h) x 0.83(d)

Table of Contents

Part I. Integral Geometry in the Plane: 1. Convex sets in the plane; 2. Sets of points and Poisson processes in the plane; 3. Sets of lines in the plane; 4. Pairs of points and pairs of lines; 5. Sets of strips in the plane; 6. The group of motions in the plane: kinematic density; 7. Fundamental formulas of Poincaré and Blaschke; 8. Lattices of figures; Part II. General Integral Geometry: 9. Differential forms and Lie groups; 10. Density and measure in homogenous spaces; 11. The affine groups; 12. The group of motions in En; Part III. Integral Geometry in En: 13. Convex sets in En; 14. Linear subspaces, convex sets and compact manifolds; 15. The kinematic density in En; 16. Geometric and statistical applications: stereology; Part IV. Integral Geometry in Spaces of Constant Curvature: 17. Noneuclidean integral geometry; 18. Crofton's formulas and the kinematic fundamental formula in noneuclidean spaces; 19. Integral geometry and foliated spaces: trends in integral geometry.
From the B&N Reads Blog

Customer Reviews