Crowdsourced testing is an emerging paradigm that can improve the cost-effectiveness of softwaretesting and accelerate the process, especially for mobile applications. It entrusts testing tasks to online crowdworkers whose diverse testing devices/contexts, experience, and skill sets can significantly contribute to more reliable, cost-effective and efficient testing results. It has already been adopted by many software organizations, including Google, Facebook, Amazon and Microsoft.
This book provides an intelligent overview of crowdsourced testing research and practice. It employs machine learning, data mining, and deep learning techniques to process the data generated during the crowdsourced testing process, to facilitate the management of crowdsourced testing, and to improve the quality of crowdsourced testing.
Crowdsourced testing is an emerging paradigm that can improve the cost-effectiveness of softwaretesting and accelerate the process, especially for mobile applications. It entrusts testing tasks to online crowdworkers whose diverse testing devices/contexts, experience, and skill sets can significantly contribute to more reliable, cost-effective and efficient testing results. It has already been adopted by many software organizations, including Google, Facebook, Amazon and Microsoft.
This book provides an intelligent overview of crowdsourced testing research and practice. It employs machine learning, data mining, and deep learning techniques to process the data generated during the crowdsourced testing process, to facilitate the management of crowdsourced testing, and to improve the quality of crowdsourced testing.

Intelligent Crowdsourced Testing
251
Intelligent Crowdsourced Testing
251Hardcover(1st ed. 2022)
Product Details
ISBN-13: | 9789811696428 |
---|---|
Publisher: | Springer Nature Singapore |
Publication date: | 06/17/2022 |
Edition description: | 1st ed. 2022 |
Pages: | 251 |
Product dimensions: | 6.10(w) x 9.25(h) x (d) |