Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms / Edition 1

Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms / Edition 1

by Da Ruan, Ed Da Ruan
     
 

ISBN-10: 0792399994

ISBN-13: 9780792399995

Pub. Date: 09/30/1997

Publisher: Springer US

Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms is an organized edited collection of contributed chapters covering basic principles, methodologies, and applications of fuzzy systems, neural networks and genetic algorithms. All chapters are original contributions by leading researchers written exclusively for this volume.

…  See more details below

Overview

Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms is an organized edited collection of contributed chapters covering basic principles, methodologies, and applications of fuzzy systems, neural networks and genetic algorithms. All chapters are original contributions by leading researchers written exclusively for this volume.
This book reviews important concepts and models, and focuses on specific methodologies common to fuzzy systems, neural networks and evolutionary computation. The emphasis is on development of cooperative models of hybrid systems. Included are applications related to intelligent data analysis, process analysis, intelligent adaptive information systems, systems identification, nonlinear systems, power and water system design, and many others.
Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms provides researchers and engineers with up-to-date coverage of new results, methodologies and applications for building intelligent systems capable of solving large-scale problems.

Product Details

ISBN-13:
9780792399995
Publisher:
Springer US
Publication date:
09/30/1997
Edition description:
1997
Pages:
354
Product dimensions:
6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Foreword; P.P. Wang. Editor's Preface; Da Ruan. Part 1: Basic Principles and Methodologies. 1. Introduction to Fuzzy Systems, Neural Networks, and Genetic Algorithms; H. Takagi. 2. A Fuzzy Neural Network for Approximate Fuzzy Reasoning; L.P. Maguire, et al. 3. Novel Neural Algorithms for Solving Fuzzy Relation Equations; Xiaozhong Li, Da Ruan. 4. Methods for Simplification of Fuzzy Models; U. Kaymak, et al. 5. A New Approach of Neurofuzzy Learning Algorithm; M. Mizumoto, Yan Shi. Part 2: Data Analysis and Information Systems. 6. Neural Networks in Intelligent Data Analysis; Xiaohui Liu. 7. Data-Driven Identification of Key Variables; Bo Yuan, G. Klir. 8. Applications of Intelligent Techniques in Process Analysis; J. Angstenberger, R. Weber. 9. Neurofuzzy-Chaos Engineering for Building Intelligent Adaptive Information Systems; N.K. Kasabov, R. Kozma. 10. A Sequential Training Strategy for Locally Recurrent Neural Networks; Jie Zhang, A.J. Morris. Part 3: Nonlinear Systems and System Identification. 11. Adaptive Genetic Programming for System Identification; A. Bastian. 12. Nonlinear System Identification with Neurofuzzy Methods; O. Nelles. 13. A Genetic Algorithm for Mixed-Integer Optimisation in Power and Water System Design and Control; Kai Chen, et al. 14. Soft Computing Based Signal Prediction, Restoration, and Filtering; E. Uchino, T. Yamakawa. Subject Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >