Introduction to Abstract Algebra / Edition 4

Hardcover (Print)
Rent from
(Save 74%)
Est. Return Date: 05/28/2015
Buy Used
Buy Used from
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $58.89
Usually ships in 1-2 business days
(Save 60%)
Other sellers (Hardcover)
  • All (16) from $58.89   
  • New (9) from $94.00   
  • Used (7) from $58.89   


Praise for the Third Edition

". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH

The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text.

The Fourth Edition features important concepts as well as specialized topics, including:

  • The treatment of nilpotent groups, including the Frattini and Fitting subgroups
  • Symmetric polynomials
  • The proof of the fundamental theorem of algebra using symmetric polynomials
  • The proof of Wedderburn's theorem on finite division rings
  • The proof of the Wedderburn-Artin theorem

Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises.

Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.

Read More Show Less

Editorial Reviews

From the Publisher
“This could also be an excellent adjunct to more theoretically oriented textbooks used in more intensive courses.”  (Computing Reviews, 5 November 2012)
Nicholson (mathematics, University of Calgary) introduces the basic structures of abstract in algebra<-->groups, rings and fields<-->in his textbook for a one- or two-semester course for undergraduates. The second edition has been revised to be accessible to students with only rudimentary college algebra. Annotation c. Book News, Inc., Portland, OR (
Read More Show Less

Product Details

  • ISBN-13: 9781118135358
  • Publisher: Wiley
  • Publication date: 3/27/2012
  • Edition number: 4
  • Pages: 560
  • Sales rank: 1,239,380
  • Product dimensions: 7.20 (w) x 10.10 (h) x 1.30 (d)

Meet the Author

W. KEITH NICHOLSON, PhD, is Professor in the Department of Mathematics and Statistics at the University of Calgary, Canada. He has published extensively in his areas of research interest, which include clean rings, morphic rings and modules, and quasi-morphic rings. Dr. Nicholson is the coauthor of Modern Algebra with Applications, Second Edition, also published by Wiley.

Read More Show Less

Table of Contents





0 Preliminaries 1

0.1 Proofs / 1

0.2 Sets / 5

0.3 Mappings / 9

0.4 Equivalences / 17

1 Integers and Permutations 23

1.1 Induction / 24

1.2 Divisors and Prime Factorization / 32

1.3 Integers Modulo n / 42

1.4 Permutations / 53

1.5 An Application to Cryptography / 67

2 Groups 69

2.1 Binary Operations / 70

2.2 Groups / 76

2.3 Subgroups / 86

2.4 Cyclic Groups and the Order of an Element / 90

2.5 Homomorphisms and Isomorphisms / 99

2.6 Cosets and Lagrange’s Theorem / 108

2.7 Groups of Motions and Symmetries / 117

2.8 Normal Subgroups / 122

2.9 Factor Groups / 131

2.10 The Isomorphism Theorem / 137

2.11 An Application to Binary Linear Codes / 143

3 Rings 159

3.1 Examples and Basic Properties / 160

3.2 Integral Domains and Fields / 171

3.3 Ideals and Factor Rings / 180

3.4 Homomorphisms / 189

3.5 Ordered Integral Domains / 199

4 Polynomials 202

4.1 Polynomials / 203

4.2 Factorization of Polynomials Over a Field / 214

4.3 Factor Rings of Polynomials Over a Field / 227

4.4 Partial Fractions / 236

4.5 Symmetric Polynomials / 239

4.6 Formal Construction of Polynomials / 248

5 Factorization in Integral Domains 251

5.1 Irreducibles and Unique Factorization / 252

5.2 Principal Ideal Domains / 264

6 Fields 274

6.1 Vector Spaces / 275

6.2 Algebraic Extensions / 283

6.3 Splitting Fields / 291

6.4 Finite Fields / 298

6.5 Geometric Constructions / 304

6.6 The Fundamental Theorem of Algebra / 308

6.7 An Application to Cyclic and BCH Codes / 310

7 Modules over Principal Ideal Domains 324

7.1 Modules / 324

7.2 Modules Over a PID / 335

8 p-Groups and the Sylow Theorems 349

8.1 Products and Factors / 350

8.2 Cauchy’s Theorem / 357

8.3 Group Actions / 364

8.4 The Sylow Theorems / 371

8.5 Semidirect Products / 379

8.6 An Application to Combinatorics / 382

9 Series of Subgroups 388

9.1 The Jordan–Hólder Theorem / 389

9.2 Solvable Groups / 395

9.3 Nilpotent Groups / 401

10 Galois Theory 412

10.1 Galois Groups and Separability / 413

10.2 The Main Theorem of Galois Theory / 422

10.3 Insolvability of Polynomials / 434

10.4 Cyclotomic Polynomials and Wedderburn’s Theorem / 442

11 Finiteness Conditions for Rings and Modules 447

11.1 Wedderburn’s Theorem / 448

11.2 The Wedderburn–Artin Theorem / 457

Appendices 471

Appendix A Complex Numbers / 471

Appendix B Matrix Algebra / 478

Appendix C Zorn’s Lemma / 486

Appendix D Proof of the Recursion Theorem / 490




Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)