Introduction to Finite Element Analysis: Formulation, Verification and Validation / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $72.59
Usually ships in 1-2 business days
(Save 36%)
Other sellers (Hardcover)
  • All (8) from $72.59   
  • New (6) from $72.59   
  • Used (2) from $129.94   


When using numerical simulation to make a decision, how can its reliability be determined? What are the common pitfalls and mistakes when assessing the trustworthiness of computed information, and how can they be avoided?

Whenever numerical simulation is employed in connection with engineering decision-making, there is an implied expectation of reliability: one cannot base decisions on computed information without believing that information is reliable enough to support those decisions. Using mathematical models to show the reliability of computer-generated information is an essential part of any modelling effort.

Giving users of finite element analysis (FEA) software an introduction to verification and validation procedures, this book thoroughly covers the fundamentals of assuring reliability in numerical simulation. The renowned authors systematically guide readers through the basic theory and algorithmic structure of the finite element method, using helpful examples and exercises throughout.

  • Delivers the tools needed to have a working knowledge of the finite element method
  • Illustrates the concepts and procedures of verification and validation 
  • Explains the process of conceptualization supported by virtual experimentation
  • Describes the convergence characteristics of the h-, p- and hp-methods 
  • Covers the hierarchic view of mathematical models and finite element spaces 
  • Uses examples and exercises which illustrate the techniques and procedures of quality assurance 
  • Ideal for mechanical and structural engineering students, practicing engineers and applied mathematicians
  • Includes parameter-controlled examples of solved problems in a companion website (
Read More Show Less

Editorial Reviews

From the Publisher
“I highly recommend this as a textbook for anundergraduate engineering course on FE analysis. Moreover, Irecommend this book to every engineer who practices FE computation,since this is a well-written and unique source for studying theextremely important issue of reliability of FE analysis inpractice.”  (IACM Expressions, 1 September2012)
Read More Show Less

Product Details

  • ISBN-13: 9780470977286
  • Publisher: Wiley
  • Publication date: 5/17/2011
  • Series: Wiley Series in Computational Mechanics Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 382
  • Sales rank: 1,381,596
  • Product dimensions: 6.80 (w) x 9.80 (h) x 1.00 (d)

Meet the Author

Barna Szabó is co-founder and president of EngineeringSoftware Research and Development, Inc. (ESRD), the company thatproduces the professional finite element analysis softwareStressCheck®. Prior to his retirement from the School ofEngineering and Applied Science of Washington University in 2006 heserved as the Albert P. and Blanche Y. Greensfelder Professor ofMechanics. His primary research interest is assurance of qualityand reliability in the numerical stimulation of structural andmechanical systems by the finite element method. He has publishedover 150 papers in refereed technical journals. Several of them incollaboration with Professor Ivo Babuška, with whom he alsopublished a book on finite element analysis (John Wiley & Sons,Inc., 1991). He is a founding member and Fellow of the USAssociation for Computational Mechanics. Among his honors areelection to the Hungarian Academy of Sciences as External Memberand an honorary doctorate.

Ivo Babuška’s research has been concernedmainly with the reliability of computational analysis ofmathematical problems and their applications, especially by thefinite element method. He was the first to address a posteriorierror estimation and adaptivity in finite element analysis. Hisresearch papers on these subjects published in the 1970s have beenwidely cited. His joint work with Barna Szabó on the p-versionof the finite element method established the theoreticalfoundations and the algorithmic structure for this method. Hisrecent work has been concerned with the mathematical formulationand treatment of uncertainties which are present in everymathematical model. In recognition of his numerous importantcontributions, Professor Babuška received may honors, whichinclude honorary doctorates, medals and prizes and election toprestigious academies.

Read More Show Less

Table of Contents

About the Authors.

Series Preface.


1 Introduction.

1.1 Numerical simulation.

1.2 Why is numerical accuracy important?

1.3 Chapter summary.

2 An outline of the finite element method.

2.1 Mathematical models in one dimension.

2.2 Approximate solution.

2.3 Generalized formulation in one dimension.

2.4 Finite element approximations.

2.5 FEM in one dimension.

2.6 Properties of the generalized formulation.

2.7 Error estimation based on extrapolation.

2.8 Extraction methods.

2.9 Laboratory exercises.

2.10 Chapter summary.

3 Formulation of mathematical models.

3.1 Notation.

3.2 Heat conduction.

3.3 The scalar elliptic boundary value problem.

3.4 Linear elasticity.

3.5 Incompressible elastic materials.

3.6 Stokes' flow.

3.7 The hierarchic view of mathematical models.

3.8 Chapter summary.

4 Generalized formulations.

4.1 The scalar elliptic problem.

4.2 The principle of virtual work.

4.3 Elastostatic problems.

4.4 Elastodynamic models.

4.5 Incompressible materials.

4.6 Chapter summary.

5 Finite element spaces.

5.1 Standard elements in two dimensions.

5.2 Standard polynomial spaces.

5.3 Shape functions.

5.4 Mapping functions in two dimensions.

5.5 Elements in three dimensions.

5.6 Integration and differentiation.

5.7 Stiffness matrices and load vectors.

5.8 Chapter summary.

6 Regularity and rates of convergence.

6.1 Regularity.

6.2 Classification.

6.3 The neighborhood of singular points.

6.4 Rates of convergence.

6.5 Chapter summary.

7 Computation and verification of data.

7.1 Computation of the solution and its first derivatives.

7.2 Nodal forces.

7.3 Verification of computed data.

7.4 Flux and stress intensity factors.

7.5 Chapter summary.

8 What should be computed and why?

8.1 Basic assumptions.

8.2 Conceptualization: drivers of damage accumulation.

8.3 Classical models of metal fatigue.

8.4 Linear elastic fracture mechanics.

8.5 On the existence of a critical distance.

8.6 Driving forces for damage accumulation.

8.7 Cycle counting.

8.8 Validation.

8.9 Chapter summary.

9 Beams, plates and shells.

9.1 Beams.

9.2 Plates.

9.3 Shells.

9.4 The Oak Ridge experiments.

9.5 Chapter summary.

10 Nonlinear models.

10.1 Heat conduction.

10.2 Solid mechanics.

10.3 Chapter summary.

A Definitions.

A.1 Norms and seminorms.

A.2 Normed linear spaces.

A.3 Linear functionals.

A.4 Bilinear forms.

A.5 Convergence.

A.6 Legendre polynomials.

A.7 Analytic functions.

A.8 The Schwarz inequality for integrals.

B Numerical quadrature.

B.1 Gaussian quadrature.

B.2 Gauss–Lobatto quadrature.

C Properties of the stress tensor.

C.1 The traction vector.

C.2 Principal stresses.

C.3 Transformation of vectors.

C.4 Transformation of stresses.

D Computation of stress intensity factors.

D.1 The contour integral method.

D.2 The energy release rate.

E Saint-Venant's principle.

E.1 Green's function for the Laplace equation.

E.2 Model problem.

F Solutions for selected exercises.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)