Introduction to Heat Transfer / Edition 6

Hardcover (Print)
Rent from
(Save 75%)
Est. Return Date: 07/24/2015
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $172.82
Usually ships in 1-2 business days
(Save 38%)
Other sellers (Hardcover)
  • All (22) from $172.82   
  • New (9) from $193.20   
  • Used (13) from $172.82   


Completely updated, the sixth edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they’ll gain an appreciation for the richness and beauty of the discipline.

Read More Show Less

Editorial Reviews

A textbook for a first course in heat transfer. This revised edition (second was 1990) enhances coverage of existing material on thermal contact resistance, lumped capacitance analysis, finite-difference methods, and compact heat exchangers; adds new material on forced convection in submerged jets and free convection in open, parallel plate channels; and provides nearly 300 new problems. An alternative version of Fundamentals of Heat and Mass Transfer. Annotation c. Book News, Inc., Portland, OR (
Read More Show Less

Product Details

  • ISBN-13: 9780470501962
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 5/17/2011
  • Edition description: New Edition
  • Edition number: 6
  • Pages: 960
  • Sales rank: 152,757
  • Product dimensions: 8.40 (w) x 10.10 (h) x 1.50 (d)

Meet the Author

Frank P. Incropera is currently Matthew H. McCloskey Dean of the College of Engineering at Univeristy of Notre Dame. Professor Incropera received his B.S.M.E. from M.I.T. and his M.S.M.E. and Ph.D. from Stanford University, all in mechanical engineering. In 1998, he became the Clifford and Evelyn Brosey Professor of Mechanical Engineering. Professor Incropera has received four major Purdue teaching awards and was the 1982 recipient of the ASEE Ralph Coats Roe Award for excellence in teaching. He was the 1983 recipient of the ASEE George Westinghouse Award for achievements in teaching and research. In 1984 he became a Fellow of the ASME, and in 1988 he received the ASME Heat Transfer Memorial Award for twenty years of research accomplishments in the fields of plasma heat transfer, radiative transfer in participating media, and double-diffusive and mixed convection. In 1988 he was also recipient of the Senior Scientists Award of the Alexander von Humboldt Foundation and recipient of the Melville Medal for the best original paper published by ASME. In 1995 he received the Worcester Reed Warner Medal of ASME for contributions to the fundamental literature of heat transfer and his textbooks on the subject.
Read More Show Less

Table of Contents


CHAPTER 1 Introduction.

1.1 What and How?

1.2 Physical Origins and Rate Equations.

1.3 Relationship to Thermodynamics.

1.4 Units and Dimensions.

1.5 Analysis of Heat Transfer Problems: Methodology.

1.6 Relevance of Heat Transfer.

1.7 Summary.

CHAPTER 2 Introduction to Conduction.

2.1 The Conduction Rate Equation.

2.2 The Thermal Properties of Matter.

2.3 The Heat Diffusion Equation.

2.4 Boundary and Initial Conditions.

2.5 Summary.

CHAPTER 3 One-Dimensional, Steady-StateConduction.

3.1 The Plane Wall.

3.2 An Alternative Conduction Analysis.

3.3 Radial Systems.

3.4 Summary of One-Dimensional Conduction Results.

3.5 Conduction with Thermal Energy Generation.

3.6 Heat Transfer from Extended Surfaces.

3.7 The Bioheat Equation.

3.8 Thermoelectric Power Generation.

3.9 Micro- and Nanoscale Conduction.

3.10 Summary.

CHAPTER 4 Two-Dimensional, Steady-StateConduction.

4.1 Alternative Approaches.

4.2 The Method of Separation of Variables.

4.3 The Conduction Shape Factor and the DimensionlessConduction Heat Rate.

4.4 Finite-Difference Equations.

4.5 Solving the Finite-Difference Equations.

4.6 Summary.

CHAPTER 5 Transient Conduction.

5.1 The Lumped Capacitance Method.

5.2 Validity of the Lumped Capacitance Method.

5.3 General Lumped Capacitance Analysis.

5.4 Spatial Effects.

5.5 The Plane Wall with Convection.

5.6 Radial Systems with Convection.

5.7 The Semi-Infinite Solid.

5.8 Objects with Constant Surface Temperatures or SurfaceHeat Fluxes.

5.9 Periodic Heating.

5.10 Finite-Difference Methods.

5.11 Summary.

CHAPTER 6 Introduction to Convection.

6.1 The Convection Boundary Layers.

6.2 Local and Average Convection Coefficients.

6.3 Laminar and Turbulent Flow.

6.4 The Boundary Layer Equations.

6.5 Boundary Layer Similarity: The Normalized BoundaryLayer Equations.

6.6 Physical Interpretation of the DimensionlessParameters.

6.7 Momentum and Heat Transfer (Reynolds) Analogy.

6.8 Summary.

CHAPTER 7 External Flow.

7.1 The Empirical Method.

7.2 The Flat Plate in Parallel Flow.

7.3 Methodology for a Convection Calculation.

7.4 The Cylinder in Cross Flow.

7.5 The Sphere.

7.6 Flow Across Banks of Tubes.

7.7 Impinging Jets.

7.8 Packed Beds.

7.9 Summary.

CHAPTER 8 Internal Flow.

8.1 Hydrodynamic Considerations.

8.2 Thermal Considerations.

8.3 The Energy Balance.

8.4 Laminar Flow in Circular Tubes: Thermal Analysis andConvection Correlations.

8.5 Convection Correlations: Turbulent Flow in CircularTubes.

8.6 Convection Correlations: Noncircular Tubes and theConcentric Tube Annulus.

8.7 Heat Transfer Enhancement.

8.8 Flow in Small Channels.

8.9 Summary.

CHAPTER 9 Free Convection.

9.1 Physical Considerations.

9.2 The Governing Equations for Laminar BoundaryLayers.

9.3 Similarity Considerations.

9.4 Laminar Free Convection on a Vertical Surface.

9.5 The Effects of Turbulence.

9.6 Empirical Correlations: External Free ConvectionFlows.

9.7 Free Convection Within Parallel Plate Channels.

9.8 Empirical Correlations: Enclosures.

9.9 Combined Free and Forced Convection.

9.10 Summary.

CHAPTER 10 Boiling and Condensation.

10.1 Dimensionless Parameters in Boiling andCondensation.

10.2 Boiling Modes.

10.3 Pool Boiling.

10.4 Pool Boiling Correlations.

10.5 Forced Convection Boiling.

10.6 Condensation: Physical Mechanisms.

10.7 Laminar Film Condensation on a Vertical Plate.

10.8 Turbulent Film Condensation.

10.9 Film Condensation on Radial Systems.

10.10 Condensation in Horizontal Tubes.

10.11 Dropwise Condensation.

10.12 Summary.

CHAPTER 11 Heat Exchangers.

11.1 Heat Exchanger Types.

11.2 The Overall Heat Transfer Coefficient.

11.3 Heat Exchanger Analysis: Use of the Log MeanTemperature Difference.

11.4 Heat Exchanger Analysis: The Effectiveness–NTUMethod.

11.5 Heat Exchanger Design and PerformanceCalculations.

11.6 Additional Considerations.

11.7 Summary.

CHAPTER 12 Radiation: Processes andProperties.

12.1 Fundamental Concepts.

12.2 Radiation Heat Fluxes.

12.3 Radiation Intensity.

12.4 Blackbody Radiation.

12.5 Emission from Real Surfaces.

12.6 Absorption, Reflection, and Transmission by RealSurfaces.

12.7 Kirchhoff’s Law.

12.8 The Gray Surface.

12.9 Environmental Radiation.

12.10 Summary.

CHAPTER 13 Radiation Exchange BetweenSurfaces.

13.1 The View Factor.

13.2 Blackbody Radiation Exchange.

13.3 Radiation Exchange Between Opaque, Diffuse, GraySurfaces in an Enclosure.

13.4 Multimode Heat Transfer.

13.5 Implications of the Simplifying Assumptions.

13.6 Radiation Exchange with Participating Media.

13.7 Summary.

APPENDIX A Thermophysical Properties ofMatter.

APPENDIX B Mathematical Relations andFunctions.

APPENDIX C Thermal Conditions Associated with UniformEnergy Generation in One-Dimensional, Steady-StateSystems.

APPENDIX D The Gauss–Seidel Method.

APPENDIX E The Convection Transfer Equations.

APPENDIX F Boundary Layer Equations for TurbulentFlow.

APPENDIX G An Integral Laminar Boundary Layer Solution forParallel Flow over a Flat Plate.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)