Introduction to Mathematical Thinking

Overview

In the twenty-first century, everyone can benefit from being able to think mathematically. This is not the same as "doing math." The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned.

Mathematicians, scientists, and engineers need to "do ...

See more details below
Paperback
$7.91
BN.com price
(Save 28%)$10.99 List Price
Other sellers (Paperback)
  • All (10) from $3.85   
  • New (6) from $4.06   
  • Used (4) from $3.85   
Sending request ...

Overview

In the twenty-first century, everyone can benefit from being able to think mathematically. This is not the same as "doing math." The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned.

Mathematicians, scientists, and engineers need to "do math," and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics.

Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book.

The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university.

Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the "mathematical thinking" characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a "transition course." This book could serve as a textbook or a supplementary source for such a course.

Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills.

Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable.

Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as "the Math Guy" on Weekend Edition with Scott Simon. He writes a popular monthly blog "Devlin's Angle" for the Mathematical Association of America, another blog under the name "profkeithdevlin", and also blogs on various topics for the Huffington Post.

Read More Show Less

Product Details

  • ISBN-13: 9780615653631
  • Publisher: Keith Devlin
  • Publication date: 7/18/2012
  • Pages: 104
  • Sales rank: 164,149
  • Product dimensions: 6.00 (w) x 9.00 (h) x 0.22 (d)

Meet the Author

Keith  Devlin
Dr. Keith Devlin is a mathematician at Stanford University in California, where he is Executive Director of the university's H-STAR institute. He is a World Economic Forum Fellow and a Fellow of the American Association for the Advancement of Science. His current research is focused on the use of different media to teach and communicate mathematics to diverse audiences. He also works on the design of information/reasoning systems for intelligence analysis. Other research interests include: theory of information, models of reasoning, applications of mathematical techniques in the study of communication, and mathematical cognition. He has written 31 books and over 80 published research articles. His books have won a number of prizes, including the Pythagoras Prize, the Peano Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. In 2003, he was recognized by the California State Assembly for his "innovative work and longtime service in the field of mathematics and its relation to logic and linguistics." He is "the Math Guy" on National Public Radio.

Biography

Odds are, John Grisham doesn’t get interview questions like this: "If you could meet any mathematician, who would it be?"

But author Keith Devlin does, this time from Discover magazine as part of a January 2001 article coinciding with the publication of his book The Math Gene: How Mathematical Thinking Evolved and Why Numbers Are Like Gossip. His answer may go a long way toward explaining why he has managed to make the world of numbers not only understandable but also enjoyable to a segment of the population that can’t balance a checkbook without a net -- or backup from MIT.

“Isaac Newton,” Devlin told the inquiring minds at Discover. “He was a quarrelsome, egotistical person, but he also invented calculus. He did it, by the way, when he was a student at Cambridge. The Great Plague was going on, so the university was closed, and young Newton found himself without studies to do. Most 20-year-olds would think, ‘Whoopee! I’ll just have a good time.’ Newton went home and invented calculus.”

It is this same kind of passion for mathematics that has enabled Devlin, now the executive director of the Center for the Study of Language and Information at Stanford University, to persuade readers that arithmetic, geometry and calculus can be a bracing addition to the stack on the bedside table. In The Math Gene, he explains the “innate sense of number” that lives inside the human mind and how the development of mathematical thinking is closely bound to the development of language. In Goodbye, Descartes: The End of Logic and the Search for a New Cosmology of the Mind, he argues against the possibility of artificial intelligence, saying that computers are simply logic machines that cannot replicate the rational thought and communication that are part of human smarts. In his newest book, The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, he explains a historic competition announced by a Cambridge, Massachusetts foundation in 2000: Anyone who could solve any one of seven of the most perplexing math problems of the current age would win $1 million.

In a 1999 review, the Economist noted that “Devlin succeeds both in giving us a glimpse of the internal beauty of the subject and in demonstrating its usefulness in the external world. The Language of Mathematics is lucidly written and richly illustrated, and remains accessible and enthusiastic throughout.”

On NPR’s Weekend Edition, where he has become a regular guest, Devlin is referred to simply as “The Math Guy,” or as host Scott Simon once put it “our white knight of the world of mathematics.”

And, going back to that provocative subtitle in The Math Gene, just how is math like gossip? “Mathematicians deal with a collection of objects -- numbers, triangles, groups, fields -- and ask questions like: ‘What is the relationship between Objects X and Y?. If X does this to Y, what will Y do back to X?’” he told Discover. “It's got plot, it's got characters, it's got relationships between them, and it's got life and emotion and passion and love and hate, a bit of everything you can find in a soap opera. On the other hand, a soap opera isn't going to get you to the moon and back. Mathematics can.”

Just don’t forget to carry the 1.

Good To Know

Devlin was the coauthor of the television special A Mathematical Mystery Tour, broadcast as part of the Nova series in 1984.

He once offered as proof of the human brain’s intuitive math skills the ability to judge speed and distance while driving and the ability to add up bowling scores.

Devlin once managed to explain the mathematical difference between a knot and a tangle to National Public Radio’s listeners.

Read More Show Less
    1. Hometown:
      Palo Alto, California
    1. Date of Birth:
      March 16, 1947
    2. Place of Birth:
      Hull, England
    1. Education:
      B.S., King's College, London, 1968; Ph.D., University of Bristol, 1971

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)