Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems / Edition 2

Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems / Edition 2

by J.E. Marsden, Tudor Ratiu
     
 

ISBN-10: 1441931430

ISBN-13: 9781441931436

Pub. Date: 12/01/2010

Publisher: Springer New York

A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers,…  See more details below

Overview

A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.

Product Details

ISBN-13:
9781441931436
Publisher:
Springer New York
Publication date:
12/01/2010
Series:
Texts in Applied Mathematics Series, #17
Edition description:
Softcover reprint of hardcover 2nd ed. 1999
Pages:
586
Product dimensions:
1.22(w) x 9.21(h) x 6.14(d)

Table of Contents

Preface
• About the Authors
• 1 Introduction and Overview
• 2 Hamiltonian Systems on Linear Symplectic Spaces
• 3 An Introduction to Infinite-Dimensional Systems
• 4 Manifolds, Vector Fields, and Differential Forms
• 5 Hamiltonian Systems on Symplectic Manifolds
• 6 Cotangent Bundles
• 7 Lagrangian Mechanics
• 8 Variational Principles, Constraints, and Rotating Systems
• 9 An Introduction to Lie Groups
• 10 Poisson Manifolds
• 11 Momentum Maps *12 Computation and Properties of Momentum Maps
• 13 Lie-Poisson and Euler-Poincare Reduction
• 14 Coadjoint Orbits
• 15 The Free Rigid Body
• References

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >