Introduction to Modeling of Transport Phenomena in Porous Media / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $212.57
Usually ships in 1-2 business days
(Save 41%)
Other sellers (Hardcover)
  • All (6) from $212.57   
  • New (3) from $323.95   
  • Used (3) from $212.57   

Editorial Reviews

Provides theoretical background for engineers and scientists engaged in modeling transport phenomena in porous media in connection with various engineering projects, and can serve as a text for senior and graduate courses. Systematically presents a methodology for constructing mathematical models on the basis of the continuum approach, applicable to problems such as water flow and transport of pollutants in aquifers and in the unsaturated zone; flow of oil, water, and gas in petroleum reservoirs; radioactive waste disposal in deep geological formations; heat storage in aquifers; and solute transport in reactors in the chemical industry. Annotation c. Book News, Inc., Portland, OR (
Read More Show Less

Product Details

Table of Contents

A General Theory.- 1 The Porous Medium.- 1.1 Definition and Classification of Porous Media.- 1.1.1 Definition of a porous medium.- 1.1.2 Classification of porous media.- 1.1.3 Some geometrical characteristics of porous media.- 1.1.4 Homogeneity and isotropy of a porous medium.- 1.2 The Continuum Model of a Porous Medium.- 1.2.1 The need for a continuum approach.- 1.2.2 Representative Elementary Volume (REV).- 1.2.3 Selection of REV.- 1.2.4 Representative Elementary Area (REA).- 1.3 Macroscopic Values.- 1.3.1 Volume and mass averages.- 1.3.2 Areal averages.- 1.3.3 Relationship between volume and areal averages.- 1.4 Higher-Order Averaging.- 1.4.1 Smoothing out macroscopic heterogeneity.- 1.4.2 The hydraulic approach.- 1.4.3 Compartmental models.- 1.5 Multicontinuum Models.- 1.5.1 Fractured porous media.- 1.5.2 Multilayer systems.- 2 Macroscopic Description of Transport Phenomena in Porous Media.- 2.1 Elements of Kinematics of Continua.- 2.1.1 Points and particles.- 2.1.2 Coordinates.- 2.1.3 Displacement and strain.- 2.1.4 Processes.- 2.1.5 Material derivative.- 2.1.6 Velocities.- 2.1.7 Flux and discharge.- 2.1.8 Gauss’ theorem.- 2.1.9 Reynolds’ transport theorem.- 2.1.10 Green’s vector theorem.- 2.1.11 Pathlines, transport lines and transport functions.- 2.1.12 Velocity potential and complex potential.- 2.1.13 Movement of a front.- 2.2 Microscopic Balance and Constitutive Equations.- 2.2.1 Derivation of balance equations.- 2.2.2 Particular cases of balance equations.- 2.2.3 Constitutive equations.- 2.2.4 Coupled transport phenomena.- 2.2.5 Phase equilibrium.- 2.3 Averaging Rules.- 2.3.1 Average of a sum.- 2.3.2 Average of a product.- 2.3.3 Average of a time derivative.- 2.3.4 Average of a spatial derivative.- 2.3.5 Average of a spatial derivative of a scalar satisfying—2G = 0.- 2.3.6 The coefficient T?*.- 2.3.7 Average of a material derivative.- 2.4 Macroscopic Balance Equations.- 2.4.1 General balance equation.- 2.4.2 Mass balance of a phase.- 2.4.3 Volume balance of a phase.- 2.4.4 Mass balance equation for a component of a phase.- 2.4.5 Balance equation for the linear momentum of a phase.- 2.4.6 Heat balance for a phase and for a saturated porous medium.- 2.4.7 Mass balance in a fractured porous medium.- 2.4.8 Megascopic balance equation.- 2.5 Stress and Strain in a Porous Medium.- 2.5.1 Total stress.- 2.5.2 Effective stress.- 2.5.3 Forces acting on the solid matrix.- 2.6 Macroscopic Fluxes.- 2.6.1 Advective flux of a single Newtonian fluid.- 2.6.2 Advective fluxes in a multiphase system.- 2.6.3 Diffusive flux.- 2.6.4 Dispersive flux.- 2.6.5 Transport coefficients.- 2.6.6 Coupled fluxes.- 2.6.7 Macrodispersive flux.- 2.7 Macroscopic Boundary Conditions.- 2.7.1 Macroscopic boundary.- 2.7.2 The general boundary condition.- 2.7.3 Boundary conditions between two porous media in single phase flow.- 2.7.4 Boundary conditions between two porous media in multiphase flow.- 2.7.5 Boundary between two fluids.- 2.7.6 Boundary with a ‘well mixed’ domain.- 2.7.7 Boundary with fluid phase change.- 2.7.8 Boundary between a porous medium and an overlying body of flowing fluid.- 3 Mathematical Statement of a Transport Problem.- 3.1 Standard Content of a Problem Statement.- 3.1.1 Conceptual model.- 3.1.2 Mathematical model.- 3.2 Multicontinuum Models.- 3.3 Deletion of Nondominant Effects.- 3.3.1 Methodology.- 3.3.2 Examples.- 3.3.3 Concluding remarks.- B Application.- 4 Mass Transport of a Single Fluid Phase Under Isothermal Conditions.- 4.1 Mass Balance Equations.- 4.1.1 The basic equation.- 4.1.2 Stationary rigid porous medium.- 4.1.3 Deformable porous medium.- 4.2 Boundary Conditions.- 4.2.1 Boundary of prescribed pressure or head.- 4.2.2 Boundary of prescribed mass flux.- 4.2.3 Semipervious boundary.- 4.2.4 Discontinuity in solid matrix properties.- 4.2.5 Sharp interface between two fluids.- 4.2.6 Phreatic surface.- 4.2.7 Seepage face.- 4.3 Complete Mathematical Model.- 4.4 Inertial Effects.- 5 Mass Transport of Multiple Fluid Phases Under Isothermal Conditions.- 5.1 Hydrostatics of a Multiphase System.- 5.1.1 Interfacial tension and capillary pressure.- 5.1.2 Capillary pressure curves.- 5.1.3 Three fluid phases.- 5.1.4 Saturation at medium discontinuity.- 5.2 Advective Fluxes.- 5.2.1 Two fluids.- 5.2.2 Two-phase effective permeability.- 5.2.3 Three-phase effective permeability.- 5.3 Mass Balance Equations.- 5.3.1 Basic equations.- 5.3.2 Nondeformable porous medium.- 5.3.3 Deformable porous medium.- 5.3.4 Buckley-Leverett approximation.- 5.3.5 Flow with interphase mass transfer.- 5.3.6 Immobile fluid phase.- 5.4 Complete Model of Multiphase Flow.- 5.4.1 Boundary and initial conditions.- 5.4.2 Complete model.- 5.4.3 Saturated-unsaturated flow domain.- 6 Transport of a Component in a Fluid Phase Under Isothermal Conditions.- 6.1 Balance Equation for a Component of a Phase.- 6.1.1 The dispersive flux.- 6.1.2 Diffusive flux.- 6.1.3 Sources and sinks at the solid-fluid interface.- 6.1.4 Sources and sinks within the liquid phase.- 6.1.5 Mass balance equation for a single component.- 6.1.6 Variable fluid density and deformable porous medium.- 6.1.7 Balance equations with immobile liquid.- 6.1.8 Fractured porous media.- 6.2 Boundary Conditions.- 6.2.1 Boundary of prescribed concentration.- 6.2.2 Boundary of prescribed flux.- 6.2.3 Boundary between two porous media.- 6.2.4 Boundary with a body of fluid.- 6.2.5 Boundary between two fluids.- 6.2.6 Phreatic surface.- 6.2.7 Seepage face.- 6.3 Complete Mathematical Model.- 6.4 Multicomponent systems.- 6.4.1 Radionuclide and other decay chains.- 6.4.2 Two multicomponent phases.- 6.4.3 Three multicomponent phases.- 7 Heat and Mass Transport.- 7.1 Fluxes.- 7.1.1 Advective flux.- 7.1.2 Dispersive flux.- 7.1.3 Diffusive flux.- 7.2 Balance Equations.- 7.2.1 Single fluid phase.- 7.2.2 Multiple fluid phases.- 7.2.3 Deformable porous medium.- 7.3 Initial and Boundary Conditions.- 7.3.1 Boundary of prescribed temperature.- 7.3.2 Boundary of prescribed flux.- 7.3.3 Boundary between two porous media.- 7.3.4 Boundary with a ‘well mixed’ domain.- 7.3.5 Boundary with phase change.- 7.4 Complete Mathematical Model.- 7.5 Natural Convection.- 8 Hydraulic Approach to Transport in Aquifers.- 8.1 Essentially Horizontal Flow Approximation.- 8.2 Integration Along Thickness.- 8.3 Conditions on the Top and Bottom Surfaces.- 8.3.1 General flux condition on a boundary.- 8.3.2 Conditions for mass transport of a single fluid phase.- 8.3.3 Conditions for a component of a fluid phase.- 8.3.4 Heat.- 8.3.5 Conditions for stress.- 8.4 Particular Balance Equations for an Aquifer.- 8.4.1 Single fluid phase.- 8.4.2 Component of a phase.- 8.4.3 Fluids separated by an abrupt interface.- 8.5 Aquifer Compaction.- 8.5.1 Integrated flow equation.- 8.5.2 Integrated equilibrium equation.- 8.6 Complete Statement of a Problem of Transport in an Aquifer.- 8.6.1 Mass of a single fluid phase.- 8.6.2 Mass of a component of a fluid phase.- 8.6.3 Saturated-unsaturated mass and component transport.- References.- Problems.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)