BN.com Gift Guide

Introduction to Nanomaterials and Devices / Edition 1

Hardcover (Print)
Buy Used
Buy Used from BN.com
$74.97
(Save 37%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $72.00
Usually ships in 1-2 business days
(Save 39%)
Other sellers (Hardcover)
  • All (11) from $72.00   
  • New (8) from $89.11   
  • Used (3) from $72.00   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$89.11
Seller since 2008

Feedback rating:

(17866)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Brand New, Perfect Condition, Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$89.12
Seller since 2009

Feedback rating:

(128)

Condition: New
New Book from multilingual publisher. Shipped from UK within 4 to 14 business days. Please check language within??the description. Established seller since 2000.

Ships from: Fairford, United Kingdom

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$92.89
Seller since 2008

Feedback rating:

(4534)

Condition: New
New Book. Shipped from UK within 4 to 14 business days. Established seller since 2000.

Ships from: Horcott Rd, Fairford, United Kingdom

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$95.18
Seller since 2007

Feedback rating:

(23584)

Condition: New
BRAND NEW

Ships from: Avenel, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$96.36
Seller since 2009

Feedback rating:

(10661)

Condition: New
New Book. Shipped from US within 10 to 14 business days. Established seller since 2000.

Ships from: Secaucus, NJ

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$99.13
Seller since 2014

Feedback rating:

(0)

Condition: New
Hardcover Brand new, US edition, ship within 24 hours with tracking No.

Ships from: BOLINGBROOK, IL

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$106.97
Seller since 2014

Feedback rating:

(5)

Condition: New
Hardcover New 0470927070 Brand New Book in Perfect Condition. Fast Shipping with tracking number.

Ships from: Houston, TX

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$130.92
Seller since 2014

Feedback rating:

(0)

Condition: New
Hardcover New in new dust jacket. Brand New US edition, 3-5 days shipping!

Ships from: San Francisco, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

An invaluable introduction to nanomaterials and their applications

Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots.

Written by a renowned specialist in the field, this book features:

  • An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials
  • Information on the application of quantum mechanics to nanomaterial structures and quantum transport
  • Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics
  • An in-depth look at optical, electrical, and transport properties
  • Coverage of electronic devices and optoelectronic devices
  • Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots

Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.

Read More Show Less

Product Details

  • ISBN-13: 9780470927076
  • Publisher: Wiley
  • Publication date: 12/13/2011
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 488
  • Product dimensions: 5.60 (w) x 9.30 (h) x 1.20 (d)

Meet the Author

Omar Manasreh, PhD, is a Full Professor of Electrical Engineering at the University of Arkansas. Dr. Manasreh has received several awards, including a Science and Technology Achievement Award presented by the Air Force Materiel Command at Wright-Patterson Air Force Base and the Aubrey E. Harvey Graduate Research Award presented by the University of Arkansas chapter of Sigma Xi. He has published more than 130 papers in technical journals, presented over fifty papers at national and international meetings, and has participated in over sixty invited talks. Dr. Manasreh is a member of the IEEE, American Physical Society, and the Materials Research Society.

Read More Show Less

Table of Contents

Preface xiii

Fundamental Constants xvii

1 Growth of Bulk, Thin Films, and Nanomaterials 1

1.1 Introduction, 1

1.2 Growth of Bulk Semiconductors, 5

1.2.1 Liquid-Encapsulated Czochralski (LEC) Method, 5

1.2.2 Horizontal Bridgman Method, 11

1.2.3 Float-Zone Growth Method, 14

1.2.4 Lely Growth Method, 16

1.3 Growth of Semiconductor Thin Films, 18

1.3.1 Liquid-Phase Epitaxy Method, 19

1.3.2 Vapor-Phase Epitaxy Method, 20

1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers, 22

1.3.4 Pulsed Laser Deposition Technique, 25

1.3.5 Molecular Beam Epitaxy Growth Technique, 27

1.4 Fabrication and Growth of Semiconductor Nanomaterials, 46

1.4.1 Nucleation, 47

1.4.2 Fabrications of Quantum Dots, 55

1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots, 56

1.5 Colloidal Growth of Nanocrystals, 61

1.6 Summary, 63

Problems, 64

Bibliography, 67

2 Application of Quantum Mechanics to Nanomaterial Structures 68

2.1 Introduction, 68

2.2 The de Broglie Relation, 71

2.3 Wave Functions and Schródinger Equation, 72

2.4 Dirac Notation, 74

2.4.1 Action of a Linear Operator on a Bra, 77

2.4.2 Eigenvalues and Eigenfunctions of an Operator, 78

2.4.3 The Dirac δ-Function, 78

2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics, 81

2.5 Variational Method, 82

2.6 Stationary States of a Particle in a Potential Step, 83

2.7 Potential Barrier with a Finite Height, 88

2.8 Potential Well with an Infinite Depth, 92

2.9 Finite Depth Potential Well, 94

2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth, 98

2.11 Triangular Potential Well, 100

2.12 Delta Function Potentials, 103

2.13 Transmission in Finite Double Barrier Potential Wells, 108

2.14 Envelope Function Approximation, 112

2.15 Periodic Potential, 117

2.15.1 Bloch’s Theorem, 119

2.15.2 The Kronig–Penney Model, 119

2.15.3 One-Electron Approximation in a Periodic Dirac δ-Function, 123

2.15.4 Superlattices, 126

2.16 Effective Mass, 130

2.17 Summary, 131

Problems, 132

Bibliography, 134

3 Density of States in Semiconductor Materials 135

3.1 Introduction, 135

3.2 Distribution Functions, 138

3.3 Maxwell–Boltzmann Statistic, 139

3.4 Fermi–Dirac Statistics, 142

3.5 Bose–Einstein Statistics, 145

3.6 Density of States, 146

3.7 Density of States of Quantum Wells, Wires, and Dots, 152

3.7.1 Quantum Wells, 152

3.7.2 Quantum Wires, 155

3.7.3 Quantum Dots, 158

3.8 Density of States of Other Systems, 159

3.8.1 Superlattices, 160

3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field, 161

3.8.3 Density of States in the Presence of an Electric Field, 163

3.9 Summary, 168

Problems, 168

Bibliography, 170

4 Optical Properties 171

4.1 Fundamentals, 172

4.2 Lorentz and Drude Models, 176

4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors, 179

4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors, 185

4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells, 186

4.6 The Optical Absorption Coefficient of the Interband Transition in Type II Superlattices, 189

4.7 The Optical Absorption Coefficient of the Intersubband Transition in Multiple Quantum Wells, 191

4.8 The Optical Absorption Coefficient of the Intersubband Transition in GaN/AlGaN Multiple Quantum Wells, 196

4.9 Electronic Transitions in Multiple Quantum Dots, 197

4.10 Selection Rules, 201

4.10.1 Electron–Photon Coupling of Intersubband Transitions in Multiple Quantum Wells, 201

4.10.2 Intersubband Transition in Multiple Quantum Wells, 202

4.10.3 Interband Transition, 202

4.11 Excitons, 204

4.11.1 Excitons in Bulk Semiconductors, 205

4.11.2 Excitons in Quantum Wells, 211

4.11.3 Excitons in Quantum Dots, 213

4.12 Cyclotron Resonance, 214

4.13 Photoluminescence, 220

4.14 Basic Concepts of Photoconductivity, 225

4.15 Summary, 229

Problems, 230

Bibliography, 232

5 Electrical and Transport Properties 233

5.1 Introduction, 233

5.2 The Hall Effect, 237

5.3 Quantum Hall and Shubnikov-de Haas Effects, 241

5.3.1 Shubnikov-de Haas Effect, 243

5.3.2 Quantum Hall Effect, 246

5.4 Charge Carrier Transport in Bulk Semiconductors, 249

5.4.1 Drift Current Density, 249

5.4.2 Diffusion Current Density, 254

5.4.3 Generation and Recombination, 257

5.4.4 Continuity Equation, 259

5.5 Boltzmann Transport Equation, 264

5.6 Derivation of Transport Coefficients Using the Boltzmann Transport Equation, 268

5.6.1 Electrical Conductivity and Mobility in n-type Semiconductors, 270

5.6.2 Hall Coefficient, RH, 273

5.7 Scattering Mechanisms in Bulk Semiconductors, 274

5.7.1 Scattering from an Ionized Impurity, 276

5.7.2 Scattering from a Neutral Impurity, 277

5.7.3 Scattering from Acoustic Phonons: Deformation Potential, 277

5.7.4 Scattering from Acoustic Phonons: Piezoelectric Potential, 278

5.7.5 Optical Phonon Scattering: Polar and Nonpolar, 278

5.7.6 Scattering from Short-Range Potentials, 279

5.7.7 Scattering from Dipoles, 281

5.8 Scattering in a Two-Dimensional Electron Gas, 281

5.8.1 Scattering by Remote Ionized Impurities, 283

5.8.2 Scattering by Interface Roughness, 285

5.8.3 Electron–Electron Scattering, 286

5.9 Coherence and Mesoscopic Systems, 287

5.10 Summary, 293

Problems, 294

Bibliography, 297

6 Electronic Devices 298

6.1 Introduction, 298

6.2 Schottky Diode, 301

6.3 Metal–Semiconductor Field-Effect Transistors (MESFETs), 305

6.4 Junction Field-Effect Transistor (JFET), 314

6.5 Heterojunction Field-Effect Transistors (HFETs), 318

6.6 GaN/AlGaN Heterojunction Field-Effect Transistors (HFETs), 322

6.7 Heterojunction Bipolar Transistors (HBTs), 325

6.8 Tunneling Electron Transistors, 328

6.9 The p–n Junction Tunneling Diode, 329

6.10 Resonant Tunneling Diodes, 334

6.11 Coulomb Blockade, 338

6.12 Single-Electron Transistor, 340

6.13 Summary, 353

Problems, 354

Bibliography, 357

7 Optoelectronic Devices 359

7.1 Introduction, 359

7.2 Infrared Quantum Detectors, 361

7.2.1 Figures of Merit, 361

7.2.2 Noise in Photodetectors, 366

7.2.3 Multiple Quantum Well Infrared Photodetectors (QWIPs), 369

7.2.4 Infrared Photodetectors Based on Multiple Quantum Dots, 380

7.3 Light-Emitting Diodes, 387

7.4 Semiconductor Lasers, 392

7.4.1 Basic Principles, 392

7.4.2 Semiconductor Heterojunction Lasers, 399

7.4.3 Quantum Well Edge-Emitting Lasers, 403

7.4.4 Vertical Cavity Surface-Emitting Lasers, 406

7.4.5 Quantum Cascade Lasers, 409

7.4.6 Quantum Dots Lasers, 412

7.5 Summary, 416

Problems, 418

Bibliography, 419

Appendix A Derivation of Heisenberg Uncertainty Principle 420

Appendix B Perturbation 424

Bibliography, 428

Appendix C Angular Momentum 429

Appendix D Wentzel-Kramers-Brillouin (WKB) Approximation 431

Bibliography, 436

Appendix E Parabolic Potential Well 437

Bibliography, 441

Appendix F Transmission Coefficient in Superlattices 442

Appendix G Lattice Vibrations and Phonons 445

Bibliography, 455

Appendix H Tunneling Through Potential Barriers 456

Bibliography, 461

Index 463

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)