Introduction to Optimal Estimation / Edition 1

Introduction to Optimal Estimation / Edition 1

by Edward W. Kamen, Jonathan K. Su, E. W. Kamen
     
 

ISBN-10: 185233133X

ISBN-13: 9781852331337

Pub. Date: 10/29/1999

Publisher: Springer London

This book provides an introductory, yet comprehensive, treatment of bo th Wiener and Kalman filtering along with a development of least-squar es estimation, maximum likelihood estimation, and maximum a posteriori estimation based on discrete-time measurements. Although this is a fa irly broad range of estimation techniques, it is possible to cover all of them in

…  See more details below

Overview

This book provides an introductory, yet comprehensive, treatment of bo th Wiener and Kalman filtering along with a development of least-squar es estimation, maximum likelihood estimation, and maximum a posteriori estimation based on discrete-time measurements. Although this is a fa irly broad range of estimation techniques, it is possible to cover all of them in some depth in a single textbook, which is what is attempte d here. Emphasis is also placed on showing how these different approac hes to estimation fit together to form a systematic development of opt imal estimation. MATLAB is used in the development of a number of the book's examples and required for many of the homework problems.

Product Details

ISBN-13:
9781852331337
Publisher:
Springer London
Publication date:
10/29/1999
Series:
Advanced Textbooks in Control and Signal Processing Series
Edition description:
1999
Pages:
380
Product dimensions:
0.82(w) x 6.14(h) x 9.21(d)

Table of Contents

1 Introduction.- 1.1 Signal Estimation.- 1.2 State Estimation.- 1.3 Least Squares Estimation.- Problems.- 2 Random Signals and Systems with Random Inputs.- 2.1 Random Variables.- 2.2 Random Discrete-Time Signals.- 2.3 Discrete-Time Systems with Random Inputs.- Problems.- 3 Optimal Estimation.- 3.1 Formulating the Problem.- 3.2 Maximum Likelihood and Maximum a posteriori Estimation.- 3.3 Minimum Mean-Square Error Estimation.- 3.4 Linear MMSE Estimation.- 3.5 Comparison of Estimation Methods.- Problems.- 4 The Wiener Filter.- 4.1 Linear Time-Invariant MMSE Filters.- 4.2 The FIR Wiener Filter.- 4.3 The Noncausal Wiener Filter.- 4.4 Toward the Causal Wiener Filter.- 4.5 Derivation of the Causal Wiener Filter.- 4.6 Summary of Wiener Filters.- Problems.- 5 Recursive Estimation and the Kaiman Filter.- 5.1 Estimation with Growing Memory.- 5.2 Estimation of a Constant Signal.- 5.3 The Recursive Estimation Problem.- 5.4 The Signal/Measurement Model.- 5.5 Derivation of the Kaiman Filter.- 5.6 Summary of Kaiman Filter Equations.- 5.7 Kaiman Filter Properties.- 5.8 The Steady-state Kaiman Filter.- 5.9 The SSKF as an Unbiased Estimator.- 5.10 Summary.- Problems.- 6 Further Development of the Kaiman Filter.- 6.1 The Innovations.- 6.2 Derivation of the Kaiman Filter from the Innovations.- 6.3 Time-varying State Model and Nonstationary Noises.- 6.4 Modeling Errors.- 6.5 Multistep Kaiman Prediction.- 6.6 Kaiman Smoothing.- Problems.- 7 Kaiman Filter Applications.- 7.1 Target Tracking.- 7.2 Colored Process Noise.- 7.3 Correlated Noises.- 7.4 Colored Measurement Noise.- 7.5 Target Tracking with Polar Measurements.- 7.6 System Identification.- Problems.- 8 Nonlinear Estimation.- 8.1 The Extended Kalman Filter.- 8.2 An Alternate Measurement Update.- 8.3 Nonlinear System Identification Using Neural Networks.- 8.4 Frequency Demodulation.- 8.5 Target Tracking Using the EKF.- 8.6 Multiple Target Tracking.- Problems.- A The State Representation.- A.1 Discrete-Time Case.- A.2 Construction of State Models.- A.3 Dynamical Properties.- A.4 Discretization of Noise Covariance Matrices.- B The z-transform.- B.1 Region of Convergence.- B.2 z-transform Pairs and Properties.- B.3 The Inverse z-transform.- C Stability of the Kaiman Filter.- C.1 Observability.- C.2 Controllability.- C.3 Types of Stability.- C.4 Positive-Definiteness of P(n).- C.5 An Upper Bound for P(n).- C.6 A Lower Bound for P(n).- C.7 A Useful Control Lemma.- C.8 A Kaiman Filter Stability Theorem.- C.9 Bounds for P(n).- D The Steady-State Kaiman Filter.- D.2 A Stabilizability Lemma.- D.3 Preservation of Ordering.- D.5 Existence and Stability.- E Modeling Errors.- E.1 Inaccurate Initial Conditions.- E.2 Nonlinearities and Neglected States.- References.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >