Introduction to Solid State Physics / Edition 88

Introduction to Solid State Physics / Edition 88

1.0 1
by Charles Kittel, Alex Zettl, Paul McEuen
     
 

ISBN-10: 047141526X

ISBN-13: 9780471415268

Pub. Date: 11/28/2004

Publisher: Wiley

Since the publication of the first edition over 50 years ago, Introduction to Solid State Physics has been the standard solid state physics text for physics students. The author's goal from the beginning has been to write a book that is accessible to undergraduates and consistently teachable. The emphasis in the book has always been on physics rather than formal

…  See more details below

Overview

Since the publication of the first edition over 50 years ago, Introduction to Solid State Physics has been the standard solid state physics text for physics students. The author's goal from the beginning has been to write a book that is accessible to undergraduates and consistently teachable. The emphasis in the book has always been on physics rather than formal mathematics. With each new edition, the author has attempted to add important new developments in the field without sacrificing the book's accessibility and teachability.

• A very important chapter on nanophysics has been written by an active worker in the field. This field is the liveliest addition to solid state science during the past ten years

• The text uses the simplifications made possible by the wide availability of computer technology. Searches using keywords on a search engine (such as Google) easily generate many fresh and useful references

Product Details

ISBN-13:
9780471415268
Publisher:
Wiley
Publication date:
11/28/2004
Edition description:
New Edition
Pages:
680
Sales rank:
694,328
Product dimensions:
7.74(w) x 9.36(h) x 1.20(d)

Table of Contents

CHAPTER 1: CRYSTAL STRUCTURE.      

Periodic Array of Atoms.                   

Fundamental Types of Lattices.         

Index System for Crystal Planes.           

Simple Crystal Structures.                        

Direct Imaging of Atomic Structure.               

Nonideal Crystal Structures.                       

Crystal Structure Data.                               

CHAPTER 2: WAVE DIFFRACTION AND THE RECIPROCAL LATTICE.      

Diffraction of Waves by Crystals.

Scattered Wave Amplitude.               

Brillouin Zones.                    

Fourier Analysis of the Basis.               

CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS.     

Crystals of Inert Gases.                       

Ionic Crystals.                                

Covalent Crystals.                        

Metals.                                           

Hydrogen Bonds.                           

Atomic Radii.                                       

Analysis of Elastic Strains.                   

Elastic Compliance and Stiffness Constants.       

Elastic Waves in Cubic Crystals.        

CHAPTER 4: PHONONS I. CRYSTAL VIBRATIONS.     

Vibrations of Crystals with Monatomic Basis.     

Two Atoms per Primitive Basis.                     

Quantization of Elastic Waves.                  

Phonon Momentum.                                       

Inelastic Scattering by Phonons.                       

CHAPTER 5: PHONONS II. THERMAL PROPERTIES.       

Phonon Heat Capacity.                               

Anharmonic Crystal Interactions.               

Thermal Conductivity.                               

CHAPTER 6: FREE ELECTRON FERMI GAS.       

Energy Levels in One Dimension.                               

Effect of Temperature on the Fermi-Dirac Distribution.       

Free Electron Gas in Three Dimensions.                       

Heat Capacity of the Electron Gas.                        

Electrical Conductivity and Ohm’s Law.                

Motion in Magnetic Fields.                                    

Thermal Conductivity of Metals.                               

CHAPTER 7: ENERGY BANDS.         

Nearly Free Electron Model.                   

Bloch Functions.                                       

Kronig-Penney Model.                                   

Wave Equation of Electron in a Periodic Potential.       

Number of Orbitals in a Band.                              

CHAPTER 8: SEMICONDUCTOR CRYSTALS.       

Band Gap.                                                       

Equations of Motion.                                          

Intrinsic Carrier Concentration.                             

Impurity Conductivity.                                               

Thermoelectric Effects.                                       

Semimetals.                                                       

Superlattices.                                                       

CHAPTER 9: FERMI SURFACES AND METALS.       

Construction of Fermi Surfaces.                                

Electron Orbits, Hole Orbits, and Open Orbits.                       

Calculation of Energy Bands.                                            

Experimental Methods in Fermi Surface Studies.                  

CHAPTER 10: SUPERCONDUCTIVITY.                       

Experimental Survey.                                                  

Theoretical Survey.                                                  

High-Temperature Superconductors.                                

CHAPTER 11: DIAMAGNETISM AND PARAMAGNETISM.              

Langevin Diamagnetism Equation.                                       

Quantum Theory of Diamagnetism of Mononuclear Systems.

Paramagnetism.                                                    

Quantum Theory of Paramagnetism.                                    

Cooling by Isentropic Demagnetization.                         

Paramagnetic Susceptibility of Conduction Electrons.               

CHAPTER 12: FERROMAGNETISM AND ANTIFERROMAGNETISM.   

Ferromagnetic Order.                                          

Magnons.                                                       

Neutron Magnetic Scattering.                                       

Ferrimagnetic Order.                                             

Antiferromagnetic Order.                                       

Ferromagnetic Domains.                                       

Single Domain Particles.                                

CHAPTER 13: MAGNETIC RESONANCE.             

Nuclear Magnetic Resonance.                                       

Line Width.                                                       

Hyperfine Splitting.                                        

Nuclear Quadrupole Resonance.                               

Ferromagnetic Resonance.                                       

Antiferromagnetic Resonance.                                       

Electron Paramagnetic Resonance.                               

Principle of Maser Action.                                   

CHAPTER 14: PLASMONS, POLARITONS, AND POLARONS.       

Dielectric Function of the Electron Gas.                

Plasmons.                                                       

Electrostatic Screening.                                       

Polaritons.                                                       

Electron-Electron Interaction.                                       

Electron-Phonon Interaction: Polarons.                       

Peierls Instability of Linear Metals.                           

CHAPTER 15: OPTICAL PROCESSES AND EXCITONS.       

Optical Reflectance.                                               

Excitons.                                                

Raman Effects in Crystals.                                

Energy Loss of Fast Particles in a Solid.                     

CHAPTER 16: DIELECTRICS AND FERROELECTRICS.

Macroscopic Electric Field.                                       

Local Electric Field at an Atom.                             

Dielectric Constant and Polarizability.                       

Structural Phase Transitions.                                       

Ferroelectric Crystals.                                        

Displacive Transitions.                                       

CHAPTER 17: SURFACE AND INTERFACE PHYSICS.       

Surface Crystallography.                                  

Surface Electronic Structure.                                       

Magnetoresistance in a Two-Dimensional Channel.        

p-n Junctions.                                                      

Heterostructures.                                               

Semiconductor Lasers.                                               

Light-Emitting Diodes.                                  

CHAPTER 18: NANOSTRUCTURES.

Imaging Techniques for Nanostructures.

Electronic Structure of 1D Systems.

Electrical Transport in 1D.

Electronic Structure of 0D Systems.

Electrical Transport in 0D.

Vibrational and Thermal Properties of Nanostructures.

CHAPTER 19: NONCRYSTALLINE SOLIDS.

Diffraction Pattern.

Glasses.

Amorphous Ferromagnets.

Amorphous Semiconductors.

Low Energy Excitations in Amorphous Solids.

Fiber Optics.

CHAPTER 20: POINT DEFECTS.

Lattice Vacancies.

Diffusion.

Color Centers.

CHAPTER 21: DISLOCATIONS.

Shear Strength of Single Crystals.

Dislocations.

Strength of Alloys.

Dislocations and Crystal Growth.

Hardness of Materials.

CHAPTER 22: ALLOYS.

General Consideration.

Substitutional Solid Solutions – Hume-Rotherby Rules.

Order-Disorder Transformation.

Phase Diagrams.

Transition Metal Alloys.

Kondo Effect.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >

Introduction to Solid State Physics 1 out of 5 based on 0 ratings. 1 reviews.
Anonymous More than 1 year ago
This book does an extremely poor job of explaining important concepts of solid state physics. There are only a few examples and even those do not flow well within the text. Many of the exercises at the end of the chapter were poorly related to the material. I had to reference other books and professors to get the required information. The only redeeming quality of this book was that it covered a fairly large range of topics. However, it is no help to someone that would like to learn the material. There are large jumps and gaps in the flow of the information. A text that I briefly referenced was Aschroft and Mermin. I did not read the text as completely as I did this one because Kittel was the text assigned for the class, so I can only say that I found it useful. I would recommend to purchase the Aschroft and Mermin Solid State Physics textbook instead of this one.