BN.com Gift Guide

An Introduction to the Analysis of Algorithms / Edition 1

Paperback (Print)
Buy Used
Buy Used from BN.com
$42.40
(Save 34%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $4.09
Usually ships in 1-2 business days
(Save 93%)
Other sellers (Paperback)
  • All (15) from $4.09   
  • New (5) from $26.46   
  • Used (10) from $4.09   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$26.46
Seller since 2014

Feedback rating:

(61)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
020140009X Some Shelf Wear -Brand New! Fast Shipping! Free USPS Tracking Number. Excellent Customer Service!

Ships from: Lexington, KY

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$26.99
Seller since 2011

Feedback rating:

(83)

Condition: New
Brand New Text!!! Never Been Used!!! This text is totally clean with no writing at all!!!

Ships from: Knoxville, TN

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$54.74
Seller since 2008

Feedback rating:

(17869)

Condition: New
Brand New, Perfect Condition, Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$54.75
Seller since 2007

Feedback rating:

(23584)

Condition: New
BRAND NEW

Ships from: Avenel, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$87.91
Seller since 2014

Feedback rating:

(6)

Condition: New
New

Ships from: Idyllwild, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

"People who analyze algorithms have double happiness. First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures. Then they receive a practical payoff when their theories make it possible to get other jobs done more quickly and more economically.... The appearance of this long-awaited book is therefore most welcome. Its authors are not only worldwide leaders of the field, they also are masters of exposition." --D. E. Knuth

This book provides a thorough introduction to the primary techniques used in the mathematical analysis of algorithms. The authors draw from classical mathematical material, including discrete mathematics, elementary real analysis, and combinatorics, as well as from classical computer science material, including algorithms and data structures. They focus on "average-case" or "probabilistic" analysis, although they also cover the basic mathematical tools required for "worst-case" or "complexity" analysis. Topics include recurrences, generating functions, asymptotics, trees, strings, maps, and an analysis of sorting, tree search, string search, and hashing algorithms.

Despite the large interest in the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible for work or study in the field. The authors here address this need, combining a body of material that gives the reader both an appreciation for the challenges of the field and the requisite background for keeping abreast of the new research being done to meet these challenges.

Highlights:

  • Thorough, self-contained coverage for students and professionals in computer science and mathematics
  • Focus on mathematical techniques of analysis
  • Basic preparation for the advanced results covered in Knuth's books and the research literature
  • Classical approaches and results in the analysis of algorithms

020140009XB04062001

A thorough overview of the primary techniques and models used in the mathematical analysis of algorithms. This book draws upon classical mathematical material from discrete mathematics, elementary real analysis, and combinations and discusses properties of discrete structures and covers the analysis of a variety of classic forting, searching, and string processing algorithms.

Read More Show Less

Editorial Reviews

D. E. Knuth
People who analyze algorithms have double happiness. First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures. Then they receive a practical payoff when their theories make it possible to get other jobsdone more quickly and more economically.... The appearance of this long-awaited [book] is therefore most welcome. Its authors are not only worldwide leaders of the field, they also are masters of exposition.
Booknews
An introduction to the primary techniques used in the mathematical analysis of algorithms, intended as a textbook in an upper-level course on mathematical analysis of algorithms or for a course in discrete mathematics for computer scientists. Material is drawn from discrete mathematics, elementary real analysis, and combinatorics, as well as algorithms and data structures. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780201400090
  • Publisher: Addison-Wesley
  • Publication date: 6/15/1996
  • Edition description: Older Edition
  • Edition number: 1
  • Pages: 512
  • Product dimensions: 6.00 (w) x 8.90 (h) x 1.20 (d)

Meet the Author

Robert Sedgewick is the William O. Baker Professor of Computer Science at Princeton University. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and INRIA. He earned his Ph.D from Stanford University under Donald E. Knuth.

About Philippe Flajolet The late Philippe Flajolet was a Senior Research Director at INRIA, Rocquencourt, where he created and led the ALGO research group, attracting visiting researchers from all over the world. He is celebrated for having opened new lines of research in the analysis of algorithms, having developed powerful new methods, and having solved difficult, open problems. Dr. Flajolet taught at Ecole Polytechnique and Princeton University; he also held visiting positions at Waterloo University, Stanford University, the University of Chile, the Technical University of Vienna, IBM, and Bell Laboratories. He received several prizes, including the Grand Science Prize of UAP (1986), the Computer Science Prize of the French Academy of Sciences (1994), and the Silver Medal of CNRS (2004). He was elected a Member of the Academia Europaea in 1995 and a Member (Fellow) of the French Academy of Sciences in 2003.

Phillipe passed away suddenly and unexpectedly a few months ago.

020140009XAB06262002

Read More Show Less

Read an Excerpt

This book is intended to be a thorough overview of the primary techniques used in the mathematical analysis of algorithms. The material covered draws from classical mathematical topics, including discrete mathematics, elementary real analysis, and combinatorics; as well as from classical computer science topics, including algorithms and data structures. The focus is on "average-case'' or "probabilistic'' analysis, though the basic mathematical tools required for "worst-case" or "complexity" analysis are covered, as well.

It is assumed that the reader has some familiarity with basic concepts in both computer science and real analysis. In a nutshell, the reader should be able to both write programs and prove theorems; otherwise, the book is intended to be self-contained. Ample references to preparatory material in the literature are also provided. A planned companion volume will cover more advanced techniques. Together, the books are intended to cover the main techniques and to provide access to the growing research literature on the analysis of algorithms.

The book is meant to be used as a textbook in a junior- or senior-level course on "Mathematical Analysis of Algorithms.'' It might also be useful in a course in discrete mathematics for computer scientists, since it covers basic techniques in discrete mathematics as well as combinatorics and basic properties of important discrete structures within a familiar context for computer science students. It is traditional to have somewhat broader coverage in such courses, but many instructors may find the approach here a useful way to engage students in a substantial portion of the material. The book also can be used to introduce students in mathematics and applied mathematics to principles from computer science related to algorithms and data structures.

Supplemented by papers from the literature, the book can serve as the basis for an introductory graduate course on the analysis of algorithms, or as a reference or basis for self-study by researchers in mathematics or computer science who want access to the literature in this field. It also might be of use to students and researchers in combinatorics and discrete mathematics, as a source of applications and techniques.

Despite the large literature on the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible to students and researchers in the field. This book aims to address this situation, bringing together a body of material intended to provide the reader with both an appreciation for the challenges of the field and the requisite background for learning the advanced tools being developed to meet these challenges.

Preparation

Mathematical maturity equivalent to one or two years' study at the college level is assumed. Basic courses in combinatorics and discrete mathematics may provide useful background (and may overlap with some material in the book), as would courses in real analysis, numerical methods, or elementary number theory. We draw on all of these areas, but summarize the necessary material here, with reference to standard texts for people who want more information.

Programming experience equivalent to one or two semesters' study at the college level, including elementary data structures, is assumed. We do not dwell on programming and implementation issues, but algorithms and data structures are the central object of our studies. Again, our treatment is complete in the sense that we summarize basic information, with reference to standard texts and primary sources.

Access to a computer system for mathematical manipulation such as MAPLE or Mathematica is highly recommended. These systems can relieve one from tedious calculations, when checking material in the text or solving exercises.

Related books

Related texts include "The Art of Computer Programming" by Knuth; "Handbook of Algorithms and Data Structure" by Gonnet and Baeza-Yates; "Algorithms"by Sedgewick; "Concrete Mathematics" by Graham, Knuth and Patashnik; and "Introduction to Algorithms" by Cormen, Leiserson, and Rivest. This book could be considered supplementary to each of these, as examined below, in turn.

In spirit, this book is closest to the pioneering books by Knuth, but our focus is on mathematical techniques of analysis, where those books are broad and encyclopaedic in scope with properties of algorithms playing a primary role and methods of analysis a secondary role. This book can serve as basic preparation for the advanced results covered and referred to in Knuth's books.

We also cover approaches and results in the analysis of algorithms that have been developed sincepublication of Knuth's books. The book by Gonnet and Baeza-Yates is a thorough survey of such results, including a comprehensive bibliography. That book primarily presents results with reference to derivations in the literature. Again, this book provides the basic preparation for access to this literature.

We also strive to keep the focus on covering algorithms of fundamental importance and interest, such as those described in Sedgewick, where Graham, Knuth, and Patashnik focus almost entirely on mathematical techniques. This book is intended to bea link between the basic mathematical techniques discussed in Knuth, Graham, and Patashnik and the basic algorithms covered in Sedgewick.

The book by Cormen, Leiserson, and Rivest is representative of a number of books that provide access to the research literature on "design and analysis'' of algorithms, which is normally based on rough worst-case estimates of performance. When more precise results are desired (presumably for the most important methods), more sophisticated models and mathematical tools are required. This book is supplementary to books like Cormen, Leiserson and Rivest in that they focus on design of algorithms (usually with the goal of bounding worst-case performance), with analytic results used to help guide the design, where we focus on the analysis of algorithms, especially on techniques that can be used to develop detailed results that could be used to predict performance. In this process, we also consider relationships to various classical mathematical tools. Chapter 1 is devoted entirely to developing this context.

This book also lays the groundwork for a companion volume, "Analytic Combinatorics", a general treatment that places the material in this book into a broader perspective and develops advanced methods and models that can serveas the basis for new research, not only in average-case analysis of algorithms, but also in combinatorics. A higher level of mathematical maturity is assumed for that volume, perhaps at the senior or beginning graduate student level. Of course, careful study of this book is adequate preparation. It certainly has been our goal to make the present volume sufficiently interesting that some readers will be inspired to tackle more advanced material!

How to use this book

Readers of this book are likely to have rather diverse backgrounds in discrete mathematics and computer science. With this in mind, it is useful to be aware the basic structure of book: There are eight chapters, an introduction followed by three chapters that emphasize mathematical methods, then four chapters that emphasize applications in the analysis of algorithms, as shown in the following outline:

Introduction
Analysis of Algorithms
Discrete Mathematical Methods
Recurrences
Generating Functions
Asymptotic Analysis
Algorithms and Combinatorial Structures
Trees
Permutations
Strings and Tries
Words and Maps

Chapter 1 puts the material in the book into perspective, and will help all readers understand the basic objectives of the book and the role of the remaining chapters in meeting those objectives. Chapters 2-4 are more oriented towards mathematics, as they cover methods from discrete mathematics, primarily focused on developing basic concepts and techniques. Chapters 5-8 are more oriented towards computer science, as they cover properties of combinatorial structures, their relationships to fundamental algorithms, and analytic results.

Though the book is intended to be self-contained, differences in emphasis are appropriate in teaching the material, depending on the background and experience of students and instructor. One approach, more mathematically oriented, would be to emphasize the theorems and proofs in the first part of the book, with applications drawn from Chapters 5-8. Another approach, more oriented towards computer science, would be to briefly cover the major mathematical tools in Chapters 2-4 and emphasize the algorithmic material in the second half of the book. But our primary intention is that most students should be able to learn new material from both mathematics and computer science in an interesting context by working carefully all the way through the book.

Students with a strong computer science background are likely to have seen many of the algorithms and data structures from the second half of the book but not much of the mathematical material at the beginning; students with a strong background in mathematics are likely to find the mathematical material familiar but perhaps not the algorithms and data structures. A course covering all of the material in the book could help either group of students fill in gaps in their background while building upon knowledge they already have.

There are several hundred exercises, and a list of references at the end of each chapter is included to encourage readers to consider the material in the text in more depth and to examine original sources. Further, our experience in teaching this material has shown that there are numerous opportunities for instructors to supplement lecture and reading material with computation-based laboratories and homework assignments. The material covered here is an ideal framework for students to develop expertise in a symbolic manipulation system such as Mathematica or MAPLE. Also, the experience of validating the mathematical studies by comparing them against empirical studies can be very valuable for many students.

Read More Show Less

Table of Contents

1. Analysis of Algorithms.

Why Analyze an Algorithm?

Computational Complexity.

Analysis of Algorithms.

Average-Case Analysis.

Example: Analysis of Quicksort.

Asymptotic Approximations.

Distributions.

Probabilistic Algorithms.

2. Recurrence Relations.

Basic Properties.

First-Order Recurrences.

Nonlinear First-Order Recurrences.

Higher-Order Recurrences.

Methods for Solving Recurrences.

Binary Divide-and-Conquer Recurrences and Binary Numbers.

General Divide-and-Conquer Recurrences.

3. Generating Functions.

Ordinary Generating Functions.

Exponential Generating Functions.

Generating Function Solution of Recurrences.

Expanding Generating Functions.

Transformations with Generating Functions.

Functional Equations on Generating Functions.

Solving the Quicksort Median-of-Three.

Recurrence with OGFs.

Counting with Generating Functions.

The Symbolic Method.

Lagrange Inversion.

Probability Generating Functions.

Bivariate Generating Functions.

Special Functions.

4. Asymptotic Approximations.

Notation for Asymptotic Approximations.

Asymptotic Expansions.

Manipulating Asymptotic Expansions.

Asymptotic Approximations of Finite Sums.

Euler-Maclaurin Summation.

Bivariate Asymptotics.

Laplace Method.

“Normal” Examples from the Analysis of Algorithms.

“Poisson” Examples from the Analysis of Algorithms.

Generating Function Asymptotics.

5. Trees.

Binary Trees.

Trees and Forests.

Properties of Trees.

Tree Algorithms.

Binary Search Trees.

Average Path Length in Catalan Trees.

Path Length in Binary Search Trees.

Additive Parameters of Random Trees.

Height.

Summary of Average-Case Results on Properties of Trees.

Representations of Trees and Binary Trees.

Unordered Trees.

Labelled Trees.

Other Types of Trees.

6. Permutations.

Basic Properties of Permutations.

Algorithms on Permutations.

Representations of Permutations.

Enumeration Problems.

Analyzing Properties of Permutations with CGFs.

Inversions and Insertion Sorts.

Left-to-Right Minima and Selection Sort.

Cycles and In Situ Permutation.

Extremal Parameters.

7. Strings and Tries.

String Searching.

Combinatorial Properties of Bitstrings.

Regular Expressions.

Finite-State Automata and Knuth-Morris-Pratt Algorithm.

Context-Free Grammars.

Tries.

Trie Algorithms.

Combinatorial Properties of Tries.

Larger alphabets.

8. Words and Maps.

Hashing with Separate Chaining.

Basic Properties of Words.

Birthday Paradox and Coupon Collector Problem.

Occupancy Restrictions and Extremal Parameters.

Occupancy Distributions.

Open Addressing Hashing.

Maps.

Integer Factorization and Maps. 020140009XT04062001

Read More Show Less

Preface

This book is intended to be a thorough overview of the primary techniques used in the mathematical analysis of algorithms. The material covered draws from classical mathematical topics, including discrete mathematics, elementary real analysis, and combinatorics; as well as from classical computer science topics, including algorithms and data structures. The focus is on "average-case'' or "probabilistic'' analysis, though the basic mathematical tools required for "worst-case" or "complexity" analysis are covered, as well.

It is assumed that the reader has some familiarity with basic concepts in both computer science and real analysis. In a nutshell, the reader should be able to both write programs and prove theorems; otherwise, the book is intended to be self-contained. Ample references to preparatory material in the literature are also provided. A planned companion volume will cover more advanced techniques. Together, the books are intended to cover the main techniques and to provide access to the growing research literature on the analysis of algorithms.

The book is meant to be used as a textbook in a junior- or senior-level course on "Mathematical Analysis of Algorithms.'' It might also be useful in a course in discrete mathematics for computer scientists, since it covers basic techniques in discrete mathematics as well as combinatorics and basic properties of important discrete structures within a familiar context for computer science students. It is traditional to have somewhat broader coverage in such courses, but many instructors may find the approach here a useful way to engage students in a substantial portion of the material. The book also can be used to introduce students in mathematics and applied mathematics to principles from computer science related to algorithms and data structures.

Supplemented by papers from the literature, the book can serve as the basis for an introductory graduate course on the analysis of algorithms, or as a reference or basis for self-study by researchers in mathematics or computer science who want access to the literature in this field. It also might be of use to students and researchers in combinatorics and discrete mathematics, as a source of applications and techniques.

Despite the large literature on the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible to students and researchers in the field. This book aims to address this situation, bringing together a body of material intended to provide the reader with both an appreciation for the challenges of the field and the requisite background for learning the advanced tools being developed to meet these challenges.

Preparation

Mathematical maturity equivalent to one or two years' study at the college level is assumed. Basic courses in combinatorics and discrete mathematics may provide useful background (and may overlap with some material in the book), as would courses in real analysis, numerical methods, or elementary number theory. We draw on all of these areas, but summarize the necessary material here, with reference to standard texts for people who want more information.

Programming experience equivalent to one or two semesters' study at the college level, including elementary data structures, is assumed. We do not dwell on programming and implementation issues, but algorithms and data structures are the central object of our studies. Again, our treatment is complete in the sense that we summarize basic information, with reference to standard texts and primary sources.

Access to a computer system for mathematical manipulation such as MAPLE or Mathematica is highly recommended. These systems can relieve one from tedious calculations, when checking material in the text or solving exercises.

Related books

Related texts include "The Art of Computer Programming" by Knuth; "Handbook of Algorithms and Data Structure" by Gonnet and Baeza-Yates; "Algorithms"by Sedgewick; "Concrete Mathematics" by Graham, Knuth and Patashnik; and "Introduction to Algorithms" by Cormen, Leiserson, and Rivest. This book could be considered supplementary to each of these, as examined below, in turn.

In spirit, this book is closest to the pioneering books by Knuth, but our focus is on mathematical techniques of analysis, where those books are broad and encyclopaedic in scope with properties of algorithms playing a primary role and methods of analysis a secondary role. This book can serve as basic preparation for the advanced results covered and referred to in Knuth's books.

We also cover approaches and results in the analysis of algorithms that have been developed sincepublication of Knuth's books. The book by Gonnet and Baeza-Yates is a thorough survey of such results, including a comprehensive bibliography. That book primarily presents results with reference to derivations in the literature. Again, this book provides the basic preparation for access to this literature.

We also strive to keep the focus on covering algorithms of fundamental importance and interest, such as those described in Sedgewick, where Graham, Knuth, and Patashnik focus almost entirely on mathematical techniques. This book is intended to bea link between the basic mathematical techniques discussed in Knuth, Graham, and Patashnik and the basic algorithms covered in Sedgewick.

The book by Cormen, Leiserson, and Rivest is representative of a number of books that provide access to the research literature on "design and analysis'' of algorithms, which is normally based on rough worst-case estimates of performance. When more precise results are desired (presumably for the most important methods), more sophisticated models and mathematical tools are required. This book is supplementary to books like Cormen, Leiserson and Rivest in that they focus on design of algorithms (usually with the goal of bounding worst-case performance), with analytic results used to help guide the design, where we focus on the analysis of algorithms, especially on techniques that can be used to develop detailed results that could be used to predict performance. In this process, we also consider relationships to various classical mathematical tools. Chapter 1 is devoted entirely to developing this context.

This book also lays the groundwork for a companion volume, "Analytic Combinatorics", a general treatment that places the material in this book into a broader perspective and develops advanced methods and models that can serveas the basis for new research, not only in average-case analysis of algorithms, but also in combinatorics. A higher level of mathematical maturity is assumed for that volume, perhaps at the senior or beginning graduate student level. Of course, careful study of this book is adequate preparation. It certainly has been our goal to make the present volume sufficiently interesting that some readers will be inspired to tackle more advanced material!

How to use this book

Readers of this book are likely to have rather diverse backgrounds in discrete mathematics and computer science. With this in mind, it is useful to be aware the basic structure of book: There are eight chapters, an introduction followed by three chapters that emphasize mathematical methods, then four chapters that emphasize applications in the analysis of algorithms, as shown in the following outline:

Introduction
Analysis of Algorithms
Discrete Mathematical Methods
Recurrences
Generating Functions
Asymptotic Analysis
Algorithms and Combinatorial Structures
Trees
Permutations
Strings and Tries
Words and Maps

Chapter 1 puts the material in the book into perspective, and will help all readers understand the basic objectives of the book and the role of the remaining chapters in meeting those objectives. Chapters 2-4 are more oriented towards mathematics, as they cover methods from discrete mathematics, primarily focused on developing basic concepts and techniques. Chapters 5-8 are more oriented towards computer science, as they cover properties of combinatorial structures, their relationships to fundamental algorithms, and analytic results.

Though the book is intended to be self-contained, differences in emphasis are appropriate in teaching the material, depending on the background and experience of students and instructor. One approach, more mathematically oriented, would be to emphasize the theorems and proofs in the first part of the book, with applications drawn from Chapters 5-8. Another approach, more oriented towards computer science, would be to briefly cover the major mathematical tools in Chapters 2-4 and emphasize the algorithmic material in the second half of the book. But our primary intention is that most students should be able to learn new material from both mathematics and computer science in an interesting context by working carefully all the way through the book.

Students with a strong computer science background are likely to have seen many of the algorithms and data structures from the second half of the book but not much of the mathematical material at the beginning; students with a strong background in mathematics are likely to find the mathematical material familiar but perhaps not the algorithms and data structures. A course covering all of the material in the book could help either group of students fill in gaps in their background while building upon knowledge they already have.

There are several hundred exercises, and a list of references at the end of each chapter is included to encourage readers to consider the material in the text in more depth and to examine original sources. Further, our experience in teaching this material has shown that there are numerous opportunities for instructors to supplement lecture and reading material with computation-based laboratories and homework assignments. The material covered here is an ideal framework for students to develop expertise in a symbolic manipulation system such as Mathematica or MAPLE. Also, the experience of validating the mathematical studies by comparing them against empirical studies can be very valuable for many students.

020140009XP04062001

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)