Introductory Combinatorics / Edition 5

Hardcover (Print)
Rent
Rent from BN.com
$27.88
(Save 83%)
Est. Return Date: 09/20/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $104.66
Usually ships in 1-2 business days
(Save 37%)
Other sellers (Hardcover)
  • All (19) from $104.66   
  • New (13) from $123.93   
  • Used (6) from $104.66   

Overview

This trusted best-seller emphasizes combinatorial ideas–including the pigeon-hole principle, counting techniques, permutations and combinations, Pólya counting, binomial coefficients, inclusion-exclusion principle, generating functions and recurrence relations, combinatortial structures (matchings, designs, graphs), and flows in networks. The Fifth Edition clarifies the exposition throughout and adds a wealth of new exercises. Appropriate for one- or two-semester, junior- to senior-level combinatorics courses.

Read More Show Less

Editorial Reviews

Booknews
New edition of a text designed for a two-semester course. Coverage includes the pigeonhole principle, generating permutations and combinations, binomial coefficients, generating functions, graph theory, and Polya counting. This edition features a new sections on partial orders, equivalence relations, and partitions of a positive integer. Appends answers and hints to the exercises. Annotation c. by Book News, Inc., Portland, Or.
Read More Show Less

Product Details

  • ISBN-13: 9780136020400
  • Publisher: Pearson
  • Publication date: 12/26/2008
  • Edition description: New Edition
  • Edition number: 5
  • Pages: 648
  • Product dimensions: 6.80 (w) x 9.30 (h) x 1.10 (d)

Meet the Author

Richard A. Brualdi is Bascom Professor of Mathematics, Emeritus at the University of Wisconsin-Madison. He served as Chair of the Department of Mathematics from 1993-1999. His research interests lie in matrix theory and combinatorics/graph theory. Professor Brualdi is the author or co-author of six books, and has published extensively. He is one of the editors-in-chief of the journal "Linear Algebra and its Applications" and of the journal "Electronic Journal of Combinatorics." He is a member of the American Mathematical Society, the Mathematical Association of America, the International Linear Algebra Society, and the Institute for Combinatorics and its Applications. He is also a Fellow of the Society for Industrial and Applied Mathematics.
Read More Show Less

Table of Contents

1. What is Combinatorics?

1.1 Example: Perfect Covers of Chessboards

1.2 Example: Magic Squares

1.3 Example: The Four-Color Problem

1.4 Example: The Problem of the 36 Officers

1.5 Example: Shortest-Route Problem

1.6 Example: Mutually Overlapping Circles

1.7 Example: The Game of Nim

2. The Pigeonhole Principle

2.1 Pigeonhole Principle: Simple Form

2.2 Pigeonhole Principle: Strong Form

2.3 A Theorem of Ramsay

3. Permutations and Combinations

3.1 Four Basic Counting Principles

3.2 Permutations of Sets

3.3 Combinations of Sets

3.4 Permutations of Multisets

3.5 Combinations of Multisets

3.6 Finite Probability

4. Generating Permutations and Combinations

4.1 Generating Permutations

4.2 Inversions in Permutations

4.3 Generating Combinations

4.4 Generating r-Combinations

4.5 Partial Orders and Equivalence Relations

5. The Binomial Coefficients

5.1 Pascal's Formula

5.2 The Binomial Theorem

5.3 Unimodality of Binomial Coefficients

5.4 The Multinomial Theorem

5.5 Newton's Binomial Theorem

5.6 More on Partially Ordered Sets

6. The Inclusion-Exclusion Principle and Applications

6.1 The Inclusion-Exclusion Principle

6.2 Combinations with Repetition

6.3 Derangements

6.4 Permutations with Forbidden Positions

6.5 Another Forbidden Position Problem

6.6 Möbius Inversion

7. Recurrence Relations and Generating Functions

7.1 Some Number Sequences

7.2 Generating Functions

7.3 Exponential Generating Functions

7.4 Solving Linear Homogeneous Recurrence Relations

7.5 Nonhomogeneous Recurrence Relations

7.6 A Geometry Example

8. Special Counting Sequences

8.1 Catalan Numbers

8.2 Difference Sequences and Stirling Numbers

8.3 Partition Numbers

8.4 A Geometric Problem

8.5 Lattice Paths and Schröder Numbers

9. Systems of Distinct Representatives

9.1 General Problem Formulation

9.2 Existence of SDRs

9.3 Stable Marriages

10. Combinatorial Designs

10.1 Modular Arithmetic

10.2 Block Designs

10.3 Steiner Triple Systems

10.4 Latin Squares

11. Introduction to Graph Theory

11.1 Basic Properties

11.2 Eulerian Trails

11.3 Hamilton Paths and Cycles

11.4 Bipartite Multigraphs

11.5 Trees

11.6 The Shannon Switching Game

11.7 More on Trees

12. More on Graph Theory

12.1 Chromatic Number

12.2 Plane and Planar Graphs

12.3 A 5-color Theorem

12.4 Independence Number and Clique Number

12.5 Matching Number

12.6 Connectivity

13. Digraphs and Networks

13.1 Digraphs

13.2 Networks

13.3 Matching in Bipartite Graphs Revisited

14. Pólya Counting

14.1 Permutation and Symmetry Groups

14.2 Burnside's Theorem

14.3 Pólya's Counting formula

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)