4.0 2
by Stuart A. Kauffman

View All Available Formats & Editions

In the tradition of Schr?dinger's classic What Is Life?, this book is a tour-de-force investigation of the basis of life itself, with conclusions that radically undermine the scientific approaches on which modern science rests-the approaches of Newton, Boltzman, Bohr, and Einstein. Kauffman's At Home in the Universe, which The New York Times Book…  See more details below


In the tradition of Schr?dinger's classic What Is Life?, this book is a tour-de-force investigation of the basis of life itself, with conclusions that radically undermine the scientific approaches on which modern science rests-the approaches of Newton, Boltzman, Bohr, and Einstein. Kauffman's At Home in the Universe, which The New York Times Book Review called "passionately written" and nature named "courageous," introduced pivotal ideas about order and evolution in complex life systems. In investigations, Kauffman builds on these theories and finds that classical science does not take into account that physical systems--such as people in a biosphere--effect their dynamic environments in addition to being affected by them. These systems act on their own behalf as autonomous agents, but what defines them as such? In other words, what is life? By defining and explaining autonomous agents and work in the contexts of thermodynamics and of information theory, Kauffman supplies a novel answer to this age-old question that goes beyond traditional scientific thinking. Much of Investigations unpacks the progressively surprising implications of his definition. Kauffman lays out a foundation for a new concept of organization, and explores the requirements for the emergence of a general biology that will transcend terrestrial biology to seek laws governing biospheres anywhere in the cosmos. Moreover, he presents four candidate laws to explain how autonomous agents co-create their biosphere and the startling idea of a "co-creating" cosmos. A showcase of Kauffman's most fundamental and significant ideas, Investigations presents a new way of thinking about the basics of general biology that will change the way we understand life itself--on this planet and anywhere else in the cosmos.

Read More

Editorial Reviews

From the Publisher
[REVIEW FOR AT HOME IN THE UNIVERSE:] "One of the pioneers of complexity theory is Stuart Kauffman, who lays out its rudiments in an accessible way with this challenging and audacious book."—The Economist

[REVIEW FOR AT HOME IN THE UNIVERSE:] "Kauffman's explanations of his scientific work are concise and convincing.... Whoever reads Invesigations (At Home in the Universe) for its account of Kauffman's insightful models of adaptation and self-organization will find that the scientific results speak for themselves."—Seth Lloyd, Scientific American

[REVIEW FOR AT HOME IN THE UNIVERSE:] "At home in the Universe is a condenmsed, passionately written version of Mr. Kauffman's 709-page magnum opus, The Origins of Order."—John Horgan, The New York Times Book Review

"Investigations is fun in a way not many books of this intellectual magnitude are. Kauffman cuts the hard science with wit and pondering of the utmost human persuasion....With a mix of speculation, cutting-edge science and hypothesis steeped in years of grappling with hard questions,...[this book] is sure to inspire and intrigue."—

"I have watched the long gestation of Investigations with some apprehension but more anticipation. Its reach is gigantic, from the most primitive origins of life to the macroeconomics of innovation. What comes up in its grasp is original and stimulating. This is a must read for anyone interested in the outer edges of understanding of the world around us."—Philip Anderson, Nobel Laureate, Princeton University

Product Details

Oxford University Press
Publication date:
Sold by:
Barnes & Noble
File size:
2 MB

Read an Excerpt

1. Prolegomenon to a General Biology

Lecturing in Dublin, one of the twentieth century's most famous physicists set the stage of contemporary biology during the war-heavy year of 1944. Given Erwin Schrodinger's towering reputation as the discoverer of the Schrodinger equation, the fundamental formulation of quantum mechanics, his public lectures and subsequent book were bound to draw high attention. But no one, not even Schrodinger himself, was likely to have foreseen the consequences. Schrodinger's What Is Life? is credited with inspiring a generation of physicists and biologists to seek the fundamental character of living systems. Schrodinger brought quantum mechanics, chemistry, and the still poorly formulated concept of "information" into biology. He is the progenitor of our understanding of DNA and the genetic code. Yet as brilliant as was Schrodinger's insight, I believe he missed the center. Investigations seeks that center and finds, in fact, a mystery.

In my previous two books, I laid out some of the growing reasons to think that evolution was even richer than Darwin supposed. Modern evolutionary theory, based on Darwin's concept of descent with heritable variations that are sifted by natural selection to retain the adaptive changes, has come to view selection as the sole source of order in biological organisms. But the snowflake's delicate sixfold symmetry tells us that order can arise without the benefit of natural selection. Origins of Order and At Home in the Universe give good grounds to think that much of the order in organisms, from the origin of life itself to the stunning order in the development of a newborn child from a fertilized egg, does not reflectselection alone. Instead, much of the order in organisms, I believe, is self-organized and Spontaneous. Self-organization mingles with natural selection in barely understood ways to yield the magnificence of our teeming biosphere. We must, therefore, expand evolutionary theory.

Yet we need something far more important than a broadened evolutionary theory. Despite any valid insights in my own two books, and despite the fine work of many others, including the brilliance manifest in the past three decades of molecular biology, the core of life itself remains shrouded from view. We know chunks of molecular machinery, metabolic pathways, means of membrane biosynthesis-we snow many of the parts and many of the processes. But what makes a cell alive is ;till not clear to us. The center is still mysterious.

And so I began my notebook "Investigations" in December of 1994, a full half century after Schrodinger's What Is Life?, as an intellectual enterprise unlike any I had undertaken before. Rather bravely and thinking with some presumptuousness :)f Wittgenstein's famous Philosophical Investigations, which had shattered the philosophical tradition of logical atomism in which he had richly participated, I retook myself to my office at home in Santa Fe and grandly intoned through my fingers onto the computer's disc, "Investigations," on December 4,1994. I sensed my long search would uncover issues that were then only dimly visible to me. I toped the unfolding, ongoing notebook would allow me to find the themes and .ink them into something that was vast and new but at the time inarticulate.

Two years later, in September of 1996, I published a modestly well-organized version of Investigations as a Santa Fe Institute preprint, launched it onto the web, and put it aside for the time being. I found I had indeed been led into arenas that I tad in no way expected, led by a swirl of ever new questions. I put the notebooks aside, but a year later I returned to the swirl, taking up again a struggle to see some:hing that, I think, is right in front of us-always the hardest thing to see. This book is the fruit of these efforts. And this first chapter is but an introduction, in brief, to :he themes that will be explained more fully in the following chapters. I would ask :he reader to be patient with unfamiliar terms and concepts.

My first efforts had begun with twin questions. First, in addition to the known laws of thermodynamics, could there possibly be a fourth law of thermodynamics For open thermodynamic systems, some law that governs biospheres anywhere in :he cosmos or the cosmos itself? Second, living entities-bacteria, plants, and animals-manipulate the world on their own behalf: the bacterium swimming upstream in a glucose gradient that is easily said to be going to get "dinner"; the paramecium, cilia beating like a Roman warship's oars, hot after the bacterium; we humans earning our livings. Call the bacterium, paramecium, and us humans "autonomous agents," able to act on our own behalf in an environment.

My second and core question became, What must a physical system be to be an autonomous agent? Make no mistake, we autonomous agents mutually construct our biosphere, even as we coevolve in it. Why and how this is so is a central subject of all that follows.

From the outset, there were, and remain, reasons for deep skepticism about the enterprise of Investigations. First, there are very strong arguments to say that there can be no general law for open thermodynamic systems. The core argument is simple to state. Any computer program is an algorithm that, given data, produces some sequence of output, finite or infinite. Computer programs can always be written in the form of a binary symbol string of 1 and o symbols. All possible binary symbol strings are possible computer programs. Hence, there is a countable, or denumerable, infinity of computer programs. A theorem states that for most computer programs, there is no compact description of the printout of the program. Rather, we must just unleash the program and watch it print what it prints. In short, there is no shorter description of the output of the program than that which can be obtained by running the program itself. If by the concept of a "law" we mean a compact description, ahead of time, of what the computer program will print then for any such program, there can be no law that allows us to predict what the program will actually do ahead of the actual running of the program.

The next step is simple. Any such program can be realized on a universal Turing machine such as the familiar computer. But that computer is an open nonequilibrium thermodynamic system, its openness visibly realized by the plug and power line that connects the computer to the electric power grid. Therefore, and I think this conclusion is cogent, there can be no general law for all possible nonequilibrium thermodynamic systems.

So why was I conjuring the possibility of a general law for open thermodynamic systems? Clearly, no such general law can hold for all open thermodynamic systems.

But hold a moment. It is we humans who conceived and built the intricate assembly of chips and logic gates that constitute a computer, typically we humans who program it, and we humans who contrived the entire power grid that supplies the electric power to run the computer itself. This assemblage of late-twentiethcentury technology did not assemble itself. We built it.

On the other hand, no one designed and built the biosphere. The biosphere got itself constructed by the emergence and persistent coevolution of autonomous agents. If there cannot be general laws for all open thermodynamic systems, might there be general laws for thermodynamically open but self-constructing systems such as biospheres? I believe that the answer is yes. Indeed, among those candidate laws to be discussed in this book is a candidate fourth law of thermodynamics for such self-constructing systems.

To roughly state the candidate law, I suspect that biospheres maximize the average secular construction of the diversity of autonomous agents and the ways those agents can make a living to propagate further. In other words, on average, biospheres persistently increase the diversity of what can happen next. In effect, as we shall see later, biospheres may maximize the average sustained growth of their own "dimensionality."

Thus, the enterprise of Investigations soon began to center on the character of the autonomous agents whose coevolution constructs a biosphere. I was gradually led to a labyrinth of issues concerning the core features of autonomous agents able to manipulate the world on their own behalf. It may be that those core features capture a proper definition of life and that definition differs from the one Schrodingerfound.

To state my hypothesis abruptly and without preamble, I think an autonomous agent is a self-reproducing system able to perform at least one thermodynamic work cycle. It will require most of this book to unfold the implications of this tentative definition.

Following an effort to understand what an autonomous agent might bewhich, as just noted, involves the concept of work cycles-I was led to the concepts of work itself, constraints, and work as the constrained release of energy. In turn, this led to the fact that work itself is often used to construct constraints on the release of energy that then constitutes further work. So we confront a virtuous cycle: Work constructs constraints, yet constraints on the release of energy are required for work to be done. Here is the heart of a new concept of "organization" that is not covered by our concepts of matter alone, energy alone, entropy alone, or information alone. In turn, this led me to wonder about the relation between the emergence of constraints in the universe and in a biosphere, and the diversification of patterns of the constrained release of energy that alone constitute work and the use of that work to build still further constraints on the release of energy. How do biospheres construct themselves or how does the universe construct itself? ...

Read More

Meet the Author

Stuart Kauffman, winner of the MacArthur "genius" award, is a founding member of the Santa Fe Institute, the leading center for the emerging sciences of complexity. A major force in science and its applications to the business world, he formed BiosGroup LP in 1996 in partnership with Ernst & Young. The author of previous bestsellers Origins of Order and At Home in the Universe, he lives in Santa Fe, New Mexico.

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >