×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Is Pluto a Planet?: A Historical Journey through the Solar System
     

Is Pluto a Planet?: A Historical Journey through the Solar System

by David A. Weintraub
 

See All Formats & Editions

With the discovery of Eris, an object within our solar system that is larger than Pluto, astronomers have again been thrown into an age-old debate about what is and what is not a planet. But Pluto itself has been subject to controversy since its discovery in 1930, and questions over its status linger. Is Pluto a Planet? tells the story of how the meaning of the word

Overview

With the discovery of Eris, an object within our solar system that is larger than Pluto, astronomers have again been thrown into an age-old debate about what is and what is not a planet. But Pluto itself has been subject to controversy since its discovery in 1930, and questions over its status linger. Is Pluto a Planet? tells the story of how the meaning of the word planet has changed from antiquity to the present day, as new objects in our solar system have been discovered. In lively, thoroughly accessible prose, David Weintraub provides the historical, philosophical, and astronomical background that allows us to decide for ourselves whether Pluto is indeed a planet.

Editorial Reviews

Lunar & Planetary Information Bulletin
Weaving the history of our thinking about planets and cosmology into a single, remarkable story, this book is for all those who seek a fuller understanding of the science surrounding both Pluto and the provocative recent discoveries in our outer solar system.
Times Higher Education Supplement - Martin Ince
David Weintraub sets the debate in its full context, and his views will be of interest to anyone who wants to know how our view of the universe around us has changed over time.
Nature - Stuart Ross Taylor
Well told. . . . "Is Pluto a Planet?" . . . provides a readable historical account of our knowledge of the Solar System and the concept of what has been considered to be a planet. . . . Towards the end of this interesting book, Weintraub surprisingly concludes, despite the close analogy between the discovery of the asteroid and Kuiper belts, that we should retain Pluto as a planet by using three physical parameters of orbital characteristics, mass and roundness.
Observatory - David W. Hughes
A fascinating, accessible, and eminently readable historical introduction to the development of the planetary ideal.
Astronomy Now - Steve Ringwood
This book takes a sensible historical (rather than hysterical) perspective. . . . Is Pluto a Planet? is a comprehensive and desperately needed exploration of the subject and accessible to those without a prior knowledge of astronomy.
Physics Today - William F. Bottke
Few topics in planetary science have ignited as much public debate and outright acrimony as the recent decision by the International Astronomical Union to revoke Pluto's planetary status...This kind of fervor makes David A. Weintraub's Is Pluto a Planet? particularly timely in that it provides some much-needed perspective on the battle over the meaning of the term 'planet,' a battle that, as we often forget, has been going on as long as astronomy itself...[T]here is much to recommend in Is Pluto a Planet? Weintraub's history of the term 'planet' is well told and interesting, and the narrative successfully walks readers through many of the pros and cons of different planet definitions. It puts the current debate into context and demonstrates how the acceptance of the new over the old in astronomy is driven or deterred as much by human foibles as by new information...
Sky & Telescope - Carolyn Collins Petersen
Weintraub's discussion of planetary discovery and categorization puts the brouhaha over Pluto's planetary status into perspective.
Booklist - Gilbert Taylor
Its status ambiguous ever since its discovery in 1930, hapless Pluto received an insult to its dignity when the International Astronomical Union (IAU) demoted it from planethood in August 2006. Weintraub, though, will not be stampeded as he methodically considers the historically evolving definitions of a planet. . . . His survey of planetary discovery in hand, Weintraub delivers his answer to the title's question to cap an accessible, informative presentation of planetary astronomy.
BookPage - Howard Shirley
Is Pluto a Planet? is . . . [an] exceptional new book. . . .The writing is both lively and precise, conveying both historical detail and scientific explanation in clear, understandable terms. His style respects the reader's intelligence without being either didactic or superior, and the exploration of discovery remains compelling chapter after chapter.
Santa Fe New Mexican - Terry England
Weintraub argues that Pluto, and many of those objects, should be called planets. He lost that argument, but that doesn't take away from the book. He lays out in clear details the history of the discovery of the solar system. He discusses the mathematics in clear and concise detail so we don't get lost. And he covers all the arguments and gives a clear picture of learned humans struggling to understand the world around them.
Planetarian - Bruce L. Dietrich
Students and friends used to ask, 'What do you really know about UFOs?' Now they ask, 'What about Pluto?' Weintraub explains not only how such things are decided, but also how we have come to understand the structure of our solar system....For an investment in a well-written solar system and intellectual history, we recommend Is Pluto a Planet?
Space Times - Mark Williamson
The author concentrates on providing a detailed historical background to the Pluto issue by tracing the way our view of what constitutes a planet has evolved since the Mayans and the Babylonians began to observe the heavens. . . . Readers who enjoy immersing themselves in the history of astronomy, however many times they've read of Aristotle, Copernicus, and Kepler, will like this book.
Times Higher Education Supplement
David Weintraub sets the debate in its full context, and his views will be of interest to anyone who wants to know how our view of the universe around us has changed over time.
— Martin Ince
Nature
Well told. . . . "Is Pluto a Planet?" . . . provides a readable historical account of our knowledge of the Solar System and the concept of what has been considered to be a planet. . . . Towards the end of this interesting book, Weintraub surprisingly concludes, despite the close analogy between the discovery of the asteroid and Kuiper belts, that we should retain Pluto as a planet by using three physical parameters of orbital characteristics, mass and roundness.
— Stuart Ross Taylor
Science
Weintraub discusses how the concept of planet has changed. He describes the rises and falls in the number of planets recognized in our solar system—changes that lead him to term Pluto 'the fourth ninth planet.' Although readers may not accept Weintraub's answer to the titular question, they will find his thought-provoking account provides ample information for supporting a variety of positions in the continuing debate.
Observatory
A fascinating, accessible, and eminently readable historical introduction to the development of the planetary ideal.
— David W. Hughes
Astronomy Now
This book takes a sensible historical (rather than hysterical) perspective. . . . Is Pluto a Planet? is a comprehensive and desperately needed exploration of the subject and accessible to those without a prior knowledge of astronomy.
— Steve Ringwood
Physics Today
Few topics in planetary science have ignited as much public debate and outright acrimony as the recent decision by the International Astronomical Union to revoke Pluto's planetary status...This kind of fervor makes David A. Weintraub's Is Pluto a Planet? particularly timely in that it provides some much-needed perspective on the battle over the meaning of the term 'planet,' a battle that, as we often forget, has been going on as long as astronomy itself...[T]here is much to recommend in Is Pluto a Planet? Weintraub's history of the term 'planet' is well told and interesting, and the narrative successfully walks readers through many of the pros and cons of different planet definitions. It puts the current debate into context and demonstrates how the acceptance of the new over the old in astronomy is driven or deterred as much by human foibles as by new information...
— William F. Bottke
Sky & Telescope
Weintraub's discussion of planetary discovery and categorization puts the brouhaha over Pluto's planetary status into perspective.
— Carolyn Collins Petersen
Booklist
Its status ambiguous ever since its discovery in 1930, hapless Pluto received an insult to its dignity when the International Astronomical Union (IAU) demoted it from planethood in August 2006. Weintraub, though, will not be stampeded as he methodically considers the historically evolving definitions of a planet. . . . His survey of planetary discovery in hand, Weintraub delivers his answer to the title's question to cap an accessible, informative presentation of planetary astronomy.
— Gilbert Taylor
BookPage
Is Pluto a Planet? is . . . [an] exceptional new book. . . .The writing is both lively and precise, conveying both historical detail and scientific explanation in clear, understandable terms. His style respects the reader's intelligence without being either didactic or superior, and the exploration of discovery remains compelling chapter after chapter.
— Howard Shirley
Lunar and Planetary Information Bulletin

Weaving the history of our thinking about planets and cosmology into a single, remarkable story, this book is for all those who seek a fuller understanding of the science surrounding both Pluto and the provocative recent discoveries in our outer solar system.
Choice
This excellent exploration of the history of planetary astronomy provides readers with enough information to attempt their own answer. The IAU will undoubtedly consider the definition of planet in 2009; all those voting in 2006 should have considered the issues in this book. . . . Highly recommended.
Santa Fe New Mexican
Weintraub argues that Pluto, and many of those objects, should be called planets. He lost that argument, but that doesn't take away from the book. He lays out in clear details the history of the discovery of the solar system. He discusses the mathematics in clear and concise detail so we don't get lost. And he covers all the arguments and gives a clear picture of learned humans struggling to understand the world around them.
— Terry England
Planetarian
Students and friends used to ask, 'What do you really know about UFOs?' Now they ask, 'What about Pluto?' Weintraub explains not only how such things are decided, but also how we have come to understand the structure of our solar system....For an investment in a well-written solar system and intellectual history, we recommend Is Pluto a Planet?
— Bruce L. Dietrich
Space Times
The author concentrates on providing a detailed historical background to the Pluto issue by tracing the way our view of what constitutes a planet has evolved since the Mayans and the Babylonians began to observe the heavens. . . . Readers who enjoy immersing themselves in the history of astronomy, however many times they've read of Aristotle, Copernicus, and Kepler, will like this book.
— Mark Williamson
Publishers Weekly
Earlier this year, when astronomers officially "demoted" Pluto from its status as the ninth planet in our solar system, they little expected the public rancor that followed the decision. Vanderbilt astronomer Weintraub places the Pluto controversy in context in his judicious, lively account of the development of our solar system and the evolution of the meaning of the word planet, from Aristotle's theories to recent decrees by the International Astronomical Union. Assuming a geocentric universe, Aristotle argued that Mercury, Venus, the Moon, the Sun, Mars, Jupiter and Saturn were the only seven planets in the celestial realms. Later scientists-notably Kepler, Copernicus and Galileo-revolutionized astronomy by demonstrating that Earth and the other planets revolved elliptically rather than in perfect circular movements around the sun. By the mid-18th century, astronomers discovered other celestial bodies-comets, asteroids and moons-that often acted like planets by orbiting the sun and threw the definition of a planet into even more confusion. Weintraub effectively shows that Pluto is a planet by most definitions, but so are several other objects in the Kuiper asteroid belt. Weintraub's provocative, engaging study points to the richness and complexity of our solar system and its many possible planets. (Jan.) Copyright 2006 Reed Business Information.
Library Journal
In August 2006, members of the International Astronomical Union voted on a new definition for the term planet, thus excluding Pluto from this category. As Weintraub (astronomy, Vanderbilt Univ.), one of 12 sponsors of a petition protesting the new definition, explains, this is hardly the first time scientists have reconsidered the very notion of "planethood" and probably will not be the last. He argues that we should adopt a definition based on physical properties-one that includes Pluto but also Ceres (the largest asteroid in our solar system), Eris (the most recent candidate for the tenth planet in our solar system), and other new discoveries elsewhere in the universe. A postscript presents alternative criteria proposed by other astronomers and planetary scientists indicating that the current scientific debate on this issue is far from settled. This timely book would be an interesting addition to both public and academic libraries. Those seeking a book about Pluto itself should consider Alan Stern and Jacqueline Mitton's Pluto and Charon: Ice Worlds on the Ragged Edge of the Solar System.-Nancy R. Curtis, Univ. of Maine Lib., Orono Copyright 2006 Reed Business Information.
From the Publisher
"David Weintraub sets the debate in its full context, and his views will be of interest to anyone who wants to know how our view of the universe around us has changed over time."—Martin Ince,Times Higher Education Supplement

"Vanderbilt astronomer Weintraub places the Pluto controversy in context in his judicious, lively account of the development of our solar system and the evolution of the meaning of the word planet. . . . Weintraub effectively shows that Pluto is a planet by most definitions, but so are several other objects in the Kuiper asteroid belt. Weintraub's provocative, engaging study points to the richness and complexity of our solar system and its many possible planets."Publishers Weekly

"Well told. . . . "Is Pluto a Planet?" . . . provides a readable historical account of our knowledge of the Solar System and the concept of what has been considered to be a planet. . . . Towards the end of this interesting book, Weintraub surprisingly concludes, despite the close analogy between the discovery of the asteroid and Kuiper belts, that we should retain Pluto as a planet by using three physical parameters of orbital characteristics, mass and roundness."—Stuart Ross Taylor,Nature

"Weintraub discusses how the concept of planet has changed. He describes the rises and falls in the number of planets recognized in our solar system—changes that lead him to term Pluto 'the fourth ninth planet.' Although readers may not accept Weintraub's answer to the titular question, they will find his thought-provoking account provides ample information for supporting a variety of positions in the continuing debate."Science

"A fascinating, accessible, and eminently readable historical introduction to the development of the planetary ideal."—David W. Hughes, Observatory

"This book takes a sensible historical (rather than hysterical) perspective. . . . Is Pluto a Planet? is a comprehensive and desperately needed exploration of the subject and accessible to those without a prior knowledge of astronomy."—Steve Ringwood, Astronomy Now

"Few topics in planetary science have ignited as much public debate and outright acrimony as the recent decision by the International Astronomical Union to revoke Pluto's planetary status...This kind of fervor makes David A. Weintraub's Is Pluto a Planet? particularly timely in that it provides some much-needed perspective on the battle over the meaning of the term 'planet,' a battle that, as we often forget, has been going on as long as astronomy itself...[T]here is much to recommend in Is Pluto a Planet? Weintraub's history of the term 'planet' is well told and interesting, and the narrative successfully walks readers through many of the pros and cons of different planet definitions. It puts the current debate into context and demonstrates how the acceptance of the new over the old in astronomy is driven or deterred as much by human foibles as by new information."—William F. Bottke,Physics Today

"Weintraub's discussion of planetary discovery and categorization puts the brouhaha over Pluto's planetary status into perspective."—Carolyn Collins Petersen, Sky & Telescope

"David W. Weintraub's Is Pluto a Planet? A Historical Journey through the Solar System . . . traces the history of how 'planet' has been defined over the centuries."Library Journal Book Blog

"Its status ambiguous ever since its discovery in 1930, hapless Pluto received an insult to its dignity when the International Astronomical Union (IAU) demoted it from planethood in August 2006. Weintraub, though, will not be stampeded as he methodically considers the historically evolving definitions of a planet. . . . His survey of planetary discovery in hand, Weintraub delivers his answer to the title's question to cap an accessible, informative presentation of planetary astronomy."—Gilbert Taylor, Booklist

"Is Pluto a Planet? is . . . [an] exceptional new book. . . .The writing is both lively and precise, conveying both historical detail and scientific explanation in clear, understandable terms. His style respects the reader's intelligence without being either didactic or superior, and the exploration of discovery remains compelling chapter after chapter."—Howard Shirley, BookPage

"Weaving the history of our thinking about planets and cosmology into a single, remarkable story, this book is for all those who seek a fuller understanding of the science surrounding both Pluto and the provocative recent discoveries in our outer solar system."Lunar and Planetary Information Bulletin

"This excellent exploration of the history of planetary astronomy provides readers with enough information to attempt their own answer. The IAU will undoubtedly consider the definition of planet in 2009; all those voting in 2006 should have considered the issues in this book. . . . Highly recommended."Choice

"Weintraub argues that Pluto, and many of those objects, should be called planets. He lost that argument, but that doesn't take away from the book. He lays out in clear details the history of the discovery of the solar system. He discusses the mathematics in clear and concise detail so we don't get lost. And he covers all the arguments and gives a clear picture of learned humans struggling to understand the world around them."—Terry England, Santa Fe New Mexican

"Students and friends used to ask, 'What do you really know about UFOs?' Now they ask, 'What about Pluto?' Weintraub explains not only how such things are decided, but also how we have come to understand the structure of our solar system....For an investment in a well-written solar system and intellectual history, we recommend Is Pluto a Planet?"—Bruce L. Dietrich, Planetarian

"The author concentrates on providing a detailed historical background to the Pluto issue by tracing the way our view of what constitutes a planet has evolved since the Mayans and the Babylonians began to observe the heavens. . . . Readers who enjoy immersing themselves in the history of astronomy, however many times they've read of Aristotle, Copernicus, and Kepler, will like this book."—Mark Williamson, Space Times

Product Details

ISBN-13:
9780691123486
Publisher:
Princeton University Press
Publication date:
10/16/2006
Edition description:
With a New postscript by the author
Pages:
272
Product dimensions:
6.10(w) x 9.30(h) x 1.10(d)

Read an Excerpt

Is Pluto a Planet?

A Historical Journey through the Solar System


By David A. Weintraub

PRINCETON UNIVERSITY PRESS

Copyright © 2007 Princeton University Press
All rights reserved.
ISBN: 978-1-4008-5297-0



CHAPTER 1

What Is a Planet?

* * *

Is Pluto a planet? This question appears so simple—clearly the answer is either yes or no—yet the simplicity is misleading. Logically, we must know what a planet is and determine whether Pluto fits those criteria if we are to construct a well-reasoned answer.

The question Is Pluto a planet? has stirred the passions of professional astronomers since this enigmatic object was discovered in 1930. In order to understand why this question vexes the professionals, we will first follow the path of early intellectual discovery along which scientists came to recognize that the Earth is a planet. Then we will walk the historical path that led to the discovery of much of the solar system, including the planets Uranus and Neptune, the asteroid belt, and Pluto. Finally, we will focus our attention on important astrophysical discoveries since the discovery of Pluto that have culminated in widespread, popular confusion and impassioned professional debate over the status of Pluto.

At the end of the twentieth century, the debate over the answer to the question Is Pluto a planet? spilled into the public domain because several new discoveries—large objects in the Kuiper Belt in our solar system, giant planets orbiting other stars, possible planet-sized objects floating freely through space—all provide new and important ways to think about how to answer this question. We will look at these new discoveries, especially at their impact on how we think about planets and planetary systems, including, of course, how we think about our own solar system.

The question Is Pluto a planet? illustrates a difficult challenge common to all areas of research and thought: how do we draw the lines we use to categorize objects and ideas? Categorization is one of the first steps in learning: we organize information by similarities and differences. We know that mammals give birth to live young; yet, a platypus lays eggs and is a mammal. Despite its name, a koala bear is a marsupial, not a bear. So which similarities are most important and fundamentally determine membership in a group or class? Which differences are incidental? As is often said, the devil is in the details.

Astronomers like to joke that knowledge of one object—a bright point of light in the nighttime sky—defines a class of objects: stars. The discovery of a second bright point of light that is not identical to the first forces us to create two distinct classes of objects—for example, red stars and blue stars. In this example, the two stars share one important characteristic—they are both bright points of light in the sky—but differ in the apparently important characteristic of color. If we then discover a third object in the sky sharing the original characteristic—a bright point of light in the nighttime sky—but differing in the second characteristic—this third object is yellow—do we conclude that these three objects belong to three distinct categories of objects, with each group being represented by only one example? Or, might we realize that we have discovered three similar objects that differ only in the incidental quality of color? Which is more important, recognizing the similarities among the objects (they are all stars) or emphasizing the differences (colors) between them? At what point should we discard the categories we are using and start anew?

By defining finer and finer categories, we learn about the physical universe in which we live. We use our knowledge both to expand our understanding (Wow, three kinds of stars exist!) and to delimit what we do not understand (Why do stars have different colors?). The problem for us lies in how we define a group (for example, planets) when we know very little about the individual objects in the group and almost nothing about the processes that made or make similar objects and have very few examples of objects that presumably are members of the group.

We cannot answer our question Is Pluto a planet? unless we are able to determine the qualities that define the boundaries of the category planet. Once we agree on how to define planet, we can ask whether a particular object, in this case Pluto, satisfies our criteria. Since we need to define planet, we could turn to a dictionary.

The Oxford English Dictionary (OED) defines the modern word planet as deriving from the Old French planete out of the Latin planeta; in turn, the Latin is derived from the Greek word for wandering star, planetos, which in turn evolved from planasthai, the verb "to wander." Clearly, we need to understand what the ancient Greeks meant by their word, and the OED tells us, giving the Old Astronomy (i.e., archaic and no longer used) usage:

A heavenly body distinguished from the fixed stars by having an apparent motion of its own among them; each planet, according to the Ptolemaic system, being carried round the Earth by the rotation of the particular sphere or orb in which it was placed. The seven planets, in the order of their accepted distance from the Earth, were the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn.


If you are reading carefully, you will have noticed that according to the ancient Greeks, the Sun was a planet but the Earth was not! Certainly, no person in the twenty-first century thinks of the Sun as a planet. We all were taught that the Sun is a star, not a planet.

So did the Sun change from a planet into a star? Of course not. Apparently, though, our understanding of what is meant by planet changed; hence, at the moment when our understanding changed, we reclassified the Sun as a star and the Earth as a planet and discarded the Old Astronomy usage.

Next, we find the Modern Astronomy definition:

The name given to each of the heavenly bodies that revolve in approximately circular orbits round the Sun (primary planets), and to those that revolve round these (secondary planets or satellites). The primary planets comprise the major planets, of which nine are known, viz., in order of distance from the Sun, Mercury, Venus, the Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, and the minor planets or asteroids, the orbits of which lie between those of Mars and Jupiter.

Another OED definition, given in the New Shorter OED, is similar:

Any of various rocky or gaseous bodies that revolve in elliptical orbits about the Sun and are visible by its reflective light, esp. each of the nine major planets (see below); any of various smaller bodies that revolve around these; a similar body revolving around another star.

The "see below" points to a list of primary planets, a definition of minor planet as an asteroid, and a definition of secondary planet as "a planet that orbits another planet, a satellite, a moon."

Whoa! The Moon revolves around the Earth; therefore, the Moon must be considered a secondary planet? Certainly, a secondary planet is some kind of planet just as a sweet potato is some kind of potato. Do we normally think of our Moon as a planet? No.

Mars has two potato-shaped moons, Phobos and Deimos, each no larger than a small city, both of which also match this definition. Are objects like Phobos and Deimos, with diameters of only a few miles, planets? No.

The Hubble Space Telescope most definitely is a satellite revolving around a primary planet, the Earth. Is the manufactured Hubble Space Telescope, which astronomers would consider to be a "rocky body," a heavenly body? If not, what if NASA hauled a ten-ton boulder into space and launched that boulder into a terrestrial orbit? The boulder is certainly a naturally made rocky body that would be in orbit around a primary planet. What meaningful difference would permit us to distinguish between these two orbiting objects, or would both qualify as secondary planets?

According to the latter two definitions, all of these objects might be planets, as are the asteroids in the asteroid belt, even the ones that are smaller than a house or car, since most of these objects revolve in approximately circular orbits around the Sun. However, according to the Modern Astronomy definition, a Sun-orbiting asteroid whose orbit keeps it in between the orbits of Earth and Mars, rather than in between the orbits of Mars and Jupiter, would not be a planet. Similarly, an asteroid in a moderately elliptical orbit between Mars and Jupiter, traveling from an outermost distance just outside of Jupiter's orbit to an innermost distance just inside of Mars's orbit, also would be disqualified as a planet. The New Shorter OED definition would allow asteroids with more elliptical orbits and those outside the Mars and Jupiter boundaries to be secondary planets, but why are such objects considered planets at all?

When I read these definitions, I want to know: Who are these Old and Modern astronomers? Am I one? Surely, the Old astronomers were not to be trusted, as they included the Moon and Sun as planets. And what of these Modern astronomers whose definition appears to include objects big and small, natural and manufactured, but only if those objects are in nearly circular orbits and in preferred locations? If either of the modern definitions is correct, far more than nine planets orbit the Sun. In fact, there must be hundreds of thousands, perhaps even millions, of planets in our solar system. Clearly, the commonly accepted notion that nine planets orbit the Sun does not match the OED version of the universe.

I, for one, am very dissatisfied when I read the OED definitions. I hope you are similarly bothered. Because the dictionary definition of planet is essentially worthless, scientifically, we have to probe much deeper into astronomy in order to answer what initially appeared to be a simple question. That is what we will do in the rest of this book.

CHAPTER 2

Seven Perfect Planets Made of Aether

* * *

What would you learn if you could look up and observe the sky, night after night, year after year, unencumbered by the accumulated intellectual burdens and prejudices of the twenty-first-century world? The first thing you would notice is that, like clockwork, the Sun rises every morning and sets every evening. The exact moments and directions of sunrise and sunset change in cyclical patterns that mark the seasons; yet, no matter the season, the Sun appears to sweep out one great circle, moving from east to west in the sky, from exact noon one day to exact noon the next day, in exactly twenty-four hours.

Ancient peoples everywhere must have watched the Sun. By doing so, they learned how to predict the onset of seasonal changes based on the height of the Sun above the southern horizon at noon, the position of the Sun along the eastern horizon at sunrise or the western horizon at sunset, or the lengths and directions of shadows cast by the Sun at different times of day. Those peoples with more advanced skills in measuring time—times of day and times of year—were more likely to prosper and survive, as their ability to stay warm and dry and to find, store, and secure adequate food supplies depended on their expertise in predicting seasonal changes.

Certainly, in times long before written records were kept, our ancestors also must have recognized that the points of light that illuminate the nighttime sky rise and set, just like the Sun. They also would have noticed that different stars rise and set at different times of the year and are organized in recognizable patterns. Furthermore, they would have discovered that these stars, as they wheel around the Earth from east to west, never change positions with respect to each other. Their positions seem to be fixed; the stars themselves seem to be attached to an unimaginably large and distant celestial sphere, with the Earth at the center, which makes one complete revolution in twenty-four hours.

At first glance, the Sun seems to be attached to the celestial sphere, as the Sun appears to be carried around the Earth from east to west with the stars, once per day. Yet, the most attentive of the ancient sky watchers would have discovered that the stars appear to go around the Earth just a little more quickly than the Sun. On our modern clocks, we would note that the time for a complete cycle of the stars is almost exactly 23 hours, 56 minutes, and 4 seconds, nearly 4 minutes less than the 24 hours required for the passage of the Sun from the position in the sky we refer to as noon to its next noontime appearance. Thus, we might imagine that the Sun has two motions. One motion takes the Sun completely around the heavens from east to west in 23 hours, 56 minutes, and 4 seconds; the second motion takes it much more slowly in the opposite direction, from west to east, by the equivalent of almost 4 minutes each day.

Since 24 hours is 1,440 minutes, and 1,440 minutes divided by 4 minutes is 360, and since the circumference of a circle has 360 degrees, the Sun moves about 1 degree per day through the fixed stars. At the end of one year, or very nearly 365 days, not only is the Sun back to its starting point among the patterns of the stars, the seasons have also completed one cycle. Thus, the ancient astronomers would have discovered that they could track the seasons by watching the stars, which for some peoples may have been easier than watching the Sun. The warmth of the Sun obviously influences the weather, the growth of plant life, and the regulation of the seasons, whereas the stars do not obviously cause any of these effects; yet, one can easily understand how ancient peoples would have assumed that the stars, like the Sun, somehow must affect life on Earth. This primitive logic is ultimately the origin of the practice of astrology and many ancient religious practices.

Once ancient peoples had associated the ability to predict the onset of the changing seasons with the nighttime sky, watching and observing the patterns of the heavens and knowing how to interpret these observations would have become one of the most important jobs within all premodern societies. The Inca, for example, began their calendar year and agricultural year with the first annual predawn appearance of the Pleiades star cluster (in the modern month of June). Furthermore, if the Sun and stars appear to guide and control the day and the seasons, might other celestial objects that are neither Sun nor star exist that control other terrestrial phenomena, or even our lives?

All ancient observers would have noticed the presence and changing appearance of the Moon. Indeed, the 29.5-day period for the phases of the Moon was one of the easiest astronomical periods to quantify, for observers in virtually all ancient cultures. Peoples living along seacoasts would, early on, have associated the Moon with the tides. Now we have a second celestial object of great importance. The Moon, though it operates on a different schedule than the Sun, rising about 50 minutes later every day while paying no attention to the seasons, also rises and sets every day and is visible at night when it is up at night. Whereas the Sun moves through the fixed pattern of stars in 365 days, the Moon zips along a path through the stars and returns to its starting point in just over 27 days. The ancient nighttime observers would have noticed that the path of the Moon, as it travels through the stars, is very similar, though not identical, to the path of the Sun.

The circular path of the Moon, when drawn on the inside surface of our imaginary celestial sphere, intersects the circular path of the Sun at two points. At one of these points, the Moon can pass in front of, and thereby eclipse, the Sun. When this happens, we experience a solar eclipse. At the other intersection point, the Moon can disappear into the Earth's shadow and thereby be eclipsed by the Earth; at such times, we experience a lunar eclipse. Over a period of about eighteen years, these two points of intersection move synchronously around the full circular path of the Sun; that is, they occur at different times of the year. All the points on the celestial sphere at which solar and lunar eclipses can occur fall along the line followed by the Sun. Thus, the thin line along which the Sun travels was given the name ecliptic.


(Continues...)

Excerpted from Is Pluto a Planet? by David A. Weintraub. Copyright © 2007 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

What People are Saying About This

Gibor Basri
General readers interested in the Pluto controversy will find much of interest in this book, which shows how the concept of 'planet' has evolved throughout history. As a professional interested in this topic, I found the historical narrative quite illuminating and useful.
Gibor Basri, University of California, Berkeley and Co-Investigator, NASA's Kepler Mission
Neil deGrasse Tyson
No matter which side of the debate you find yourself on, Is Pluto a Planet? will equip you with all the information you need to win your argument. And along the way, David Weintraub treats you to a fascinating tour of the past, present, and future of our attempts to understand the solar system and our place within it.
Neil deGrasse Tyson, Astrophysicist at the American Museum of Natural History and Director of the Hayden Planetarium, New York City
Owen Gingerich
David Weintraub tells a coherent tale with an ingenious story line. Well written and convincingly presented, Is Pluto a Planet? will appeal widely to general readers. It covers a topic that has exploded in the past decade, but I do not know of any other popular account of the outer solar system.
Owen Gingerich, Harvard-Smithsonian Center for Astrophysics, author of "The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus"
Marsden
Is Pluto a planet? Sure it is. But is it a major planet like Mars and Jupiter, or is that distant tiny body more in league with Ceres, long ago catalogued as the first and largest of the minor planets? What degree of 'planethood' should be conferred on an object orbiting a star—too small to be a star itself, yet big enough to be round? With these stimulating questions (and more) in mind, I fully support Weintraub's conclusion that our youngsters get short shrift by learning only a simple mnemonic aid when introduced to the planets around our sun.
Brian G. Marsden, Harvard-Smithsonian Center for Astrophysics

Meet the Author

David A. Weintraub is Professor of Astronomy at Vanderbilt University, which in 2003 honored him with the Jeffrey Nordhaus Award for Excellence in Undergraduate Teaching.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews