Java Number Cruncher: The Java Programmer's Guide to Numerical Computing

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $29.98
Usually ships in 1-2 business days
(Save 50%)
Other sellers (Paperback)
  • All (11) from $29.98   
  • New (6) from $43.80   
  • Used (5) from $29.98   

Overview

Java Number Cruncher: The Java Programmer's Guide to Numerical Computing, by topic expert Ronald Mak, provides practical information for Java programmers who write mathematical programs. Without excessive mathematical theory, he animates the algorithms on the computer screen with interactive graphical programs and applets.
Read More Show Less

Product Details

  • ISBN-13: 9780130460417
  • Publisher: Prentice Hall
  • Publication date: 10/28/2002
  • Series: Prentice Hall Professional Oracle Series
  • Edition description: New Edition
  • Pages: 480
  • Product dimensions: 7.00 (w) x 9.10 (h) x 0.90 (d)

Meet the Author

RONALD MAK is a senior scientist at the Research Institute for Advanced Computer Science, located at the NASA Ames Research Center in California. He is currently designing Java-based enterprise software for the next Mars rover mission. He has degrees in the mathematical sciences and in computer science from Stanford University. His two previous books were on compiler writing.

Read More Show Less

Read an Excerpt

Preface

The last time I looked, the Java programming language still had 1, 2, *, /, and % operators to do operations with numbers. It may be hard to believe today, but programming is not only about Web pages, graphics, enterprise software, database systems, and computer games.

I wrote this book to remind today's programmers, especially Java programmers, that computers really are quite good at numerical computing, affectionately known as "number crunching." In fact, some numerical computing underlies most programs—for example, not too many graphics applications or interactive computer games would get very far without crunching at least a few numbers. Of course, scientific, mathematical, statistical, and financial programs rely heavily on numerical computing.

So it behooves the typical Java programmer, besides knowing the standard API alphabet soup—JFC, RMI, JSP, EJB, JDBC, and so on—to know something about how to do good numerical computing. You'll never know when a roundoff error will bite you, or why that "correct" formula you copied right out of your favorite physics textbook into your program somehow computes the wrong answer.

Another reason I wrote this book is that I'm fascinated by the dichotomies of pure mathematics and computer science. On one hand, you have mathematics, a rigorous, abstract world where it is possible to prove, absolutely, that a computation is correct. On the other hand, you have computers, where computations are, well, they're fast. And yet, mathematicians and computer scientists can work together to devise some very clever ways to enable computers to do mathematics and, in the great majority of cases, to compute the right answer.

This book is an introduction to numerical computing. It is not a textbook on numerical methods or numerical analysis, although it certainly shows how to program many key numerical algorithms in Java. We'll examine these algorithms, enough to get a feel for how they work and why they're useful, without formally proving why they work. Because Java is ideal for doing so, we'll also demonstrate many of the algorithms with interactive, graphical programs. After seeing how we can dodge some of the pitfalls of floating-point and integer computations, we'll explore programs that solve equations for x, do interpolation and integration, solve differential equations and systems of linear equations, and more.

Numerical computing is not all work, either. This book also contains several chapters on lighter (but not necessarily less useful) topics, including computing thousands of digits of π, using different ways to generate random numbers, looking for patterns in the prime numbers, and creating the intricately beautiful fractal images.

I tried hard to keep the math in this book at the freshman calculus level or below—knowledge of high school algebra should be enough for most of it.

All the interactive programs in this book can run either as applets or as stand-alone programs. My friends and I have tested them with the Netscape 4.7 browser running on Windows, Linux, and Solaris, with Microsoft Internet Explorer 6.0 running on the PC, and Microsoft Internet Explorer 5.1 running on the Macintosh. I've tested the stand-alone programs on my Windows 98 PC with JDK 1.2, 1.3, and 1.4. Of course, there's no guarantee they'll all work perfectly for you, but the source code for all the programs, along with instructions on how to compile and run them, are available for downloading.

I wrote all the programs strictly as illustrative examples for this book. You're free to use the source code anyway you like, but bear in mind that this is not fully tested, commercial-quality code. Neither Prentice Hall nor I can be responsible for anything bad that may happen if you use these programs.

Although creating this book was primarily a solitary activity, I must acknowledge the help I got from several longtime good friends. Steve Drach, Bob Nicholson, and Owen Densmore tried out my demo applets to let me know whether they were any good and whether they ran properly in different browsers on various machine platforms (PCs, Macintoshes, and Sun workstations). Steve and I had a couple days of fun seeing how fast I could get my p programs to run.

I give extra special thanks to my technical reviewer, Wes Mitchell, another longtime friend who is currently an enterprise architect extraordinaire and formerly a mathematics and computer science professor. Wes made many suggestions for improving the text and caught some really embarrassing misstatements. (Any remaining errors are intentional—I want to see if you're paying attention.)

My agent from Waterside Productions, Danielle Jatlow, and my editor at Prentice Hall, Paul Petralia, got this project underway and kept it going.

I had a lot of fun writing this book and its programs, and I hope that comes through in the text. If you're inspired to learn more about any of the topics, then I will be very happy. You can send me e-mail at ron@apropos-logic.com or write to me at

Apropos Logic P.O. Box 20884
San Jose, CA 95160

Read More Show Less

Table of Contents

Preface.

How to Download the Source Code.

I. WHY GOOD COMPUTATIONS GO BAD.

1. Floating-Point Numbers Are Not Real!

Roundoff Errors. Error Explosion. Real Numbers versus Floating-Point Numbers. Precision and Accuracy. Disobeying the Laws of Algebra. And What about Those Integers?

2. How Wholesome Are the Integers?

The Integer Types and Operations. Signed Magnitude versus Two's-Complement. Whole Numbers versus Integer Numbers. Wrapper Classes. Integer Division and Remainder. Integer Exponentiation.

3. The Floating-Point Standard.

The Floating-Point Formats. Denormalized Numbers. Decomposing Floating-Point Numbers. The Floating-Point Operations. 60, 6', and NaN. No Exceptions! Another Look at Roundoff Errors. Strict or Nonstrict Floating-Point Arithmetic. The Machine Epsilon e. Error Analysis.

II. ITERATIVE COMPUTATIONS.

4. Summing Lists of Numbers.

A Summing Mystery-the Magnitude Problem. The Kahan Summation Algorithm. Summing Numbers in a Random Order. Summing Addends with Different Signs. Insightful Computing. Summation Summary.

5. Finding Roots.

Analytical versus Computer Solutions. The Functions. The Bisection Algorithm. The Regula Falsi Algorithm. The Improved Regula Falsi Algorithm. The Secant Algorithm. Newton's Algorithm. Fixed-Point Iteration. Double Trouble with Multiple Roots. Comparing the Root-Finder Algorithms.

6. Interpolation and Approximation.

The Power Form versus the Newton Form. Polynomial Interpolation Functions. Divided Differences. Constructing the Interpolation Function. Least-Squares Linear Regression. Constructing the Regression Line.

7. Numerical Integration.

Back to Basics. The Trapezoidal Algorithm. Simpson's Algorithm.

8. Solving Differential Equations Numerically.

Back to Basics. A Differential Equation Class. Euler's Algorithm. A Predictor-Corrector Algorithm. The Fourth-Order Runge-Kutta Algorithm.

III. A MATRIX PACKAGE.

9. Basic Matrix Operations.

Matrix. Square Matrix. Identity Matrix. Row Vector. Column Vector. Graphic Transformation Matrices. A Tumbling Cube in 3-D Space.

10. Solving Systems of Linear Equations.

The Gaussian Elimination Algorithm. Problems with Gaussian Elimination. Partial Pivoting. Scaling. LU Decomposition. Iterative Improvement. A Class for Solving Systems of Linear Equations. A Program to Test LU Decomposition. Polynomial Regression.

11. Matrix Inversion, Determinants, and Condition Numbers.

The Determinant. The Inverse. The Norm and the Condition Number. The Invertible Matrix Class. Hilbert Matrices. Comparing Solution Algorithms.

IV. THE JOYS OF COMPUTATION.

12. Big Numbers.

Big Integers. A Very Large Prime Number. Big Integers and Cryptography. Big Decimal Numbers. Big Decimal Functions.

13. Computing p.

Estimates of p and Ramanujan's Formulas. Arctangent Formulas That Generate p. Generating Billions of Digits.

14. Generating Random Numbers.

Pseudorandom Numbers. Uniformly Distributed Random Numbers. Normally Distributed Random Numbers. Exponentially Distributed Random Numbers. Monte Carlo, Buffon's Needle, and p.

15. Prime Numbers.

The Sieve of Eratosthenes and Factoring. Congruences and Modulo Arithmetic. The Lucas Test. The Miller-Rabin Test. A Combined Primality Tester. Generating Prime Numbers. Prime Number Patterns.

16. Fractals.

Fixed-Point Iteration and Orbits. Bifurcation and the Real Function f(x) 5 x2 1 c. Julia Sets and the Complex Function f(z) 5 z2 1 c. Newton's Algorithm in the Complex Plane. The Mandelbrot Set.

Index.

Read More Show Less

Preface

Preface

The last time I looked, the Java programming language still had 1, 2, *, /, and % operators to do operations with numbers. It may be hard to believe today, but programming is not only about Web pages, graphics, enterprise software, database systems, and computer games.

I wrote this book to remind today's programmers, especially Java programmers, that computers really are quite good at numerical computing, affectionately known as "number crunching." In fact, some numerical computing underlies most programs—for example, not too many graphics applications or interactive computer games would get very far without crunching at least a few numbers. Of course, scientific, mathematical, statistical, and financial programs rely heavily on numerical computing.

So it behooves the typical Java programmer, besides knowing the standard API alphabet soup—JFC, RMI, JSP, EJB, JDBC, and so on—to know something about how to do good numerical computing. You'll never know when a roundoff error will bite you, or why that "correct" formula you copied right out of your favorite physics textbook into your program somehow computes the wrong answer.

Another reason I wrote this book is that I'm fascinated by the dichotomies of pure mathematics and computer science. On one hand, you have mathematics, a rigorous, abstract world where it is possible to prove, absolutely, that a computation is correct. On the other hand, you have computers, where computations are, well, they're fast. And yet, mathematicians and computer scientists can work together to devise some very clever ways to enable computers to do mathematics and, in the great majority of cases, to compute the right answer.

This book is an introduction to numerical computing. It is not a textbook on numerical methods or numerical analysis, although it certainly shows how to program many key numerical algorithms in Java. We'll examine these algorithms, enough to get a feel for how they work and why they're useful, without formally proving why they work. Because Java is ideal for doing so, we'll also demonstrate many of the algorithms with interactive, graphical programs. After seeing how we can dodge some of the pitfalls of floating-point and integer computations, we'll explore programs that solve equations for x, do interpolation and integration, solve differential equations and systems of linear equations, and more.

Numerical computing is not all work, either. This book also contains several chapters on lighter (but not necessarily less useful) topics, including computing thousands of digits of π, using different ways to generate random numbers, looking for patterns in the prime numbers, and creating the intricately beautiful fractal images.

I tried hard to keep the math in this book at the freshman calculus level or below—knowledge of high school algebra should be enough for most of it.

All the interactive programs in this book can run either as applets or as stand-alone programs. My friends and I have tested them with the Netscape 4.7 browser running on Windows, Linux, and Solaris, with Microsoft Internet Explorer 6.0 running on the PC, and Microsoft Internet Explorer 5.1 running on the Macintosh. I've tested the stand-alone programs on my Windows 98 PC with JDK 1.2, 1.3, and 1.4. Of course, there's no guarantee they'll all work perfectly for you, but the source code for all the programs, along with instructions on how to compile and run them, are available for downloading.

I wrote all the programs strictly as illustrative examples for this book. You're free to use the source code anyway you like, but bear in mind that this is not fully tested, commercial-quality code. Neither Prentice Hall nor I can be responsible for anything bad that may happen if you use these programs.

Although creating this book was primarily a solitary activity, I must acknowledge the help I got from several longtime good friends. Steve Drach, Bob Nicholson, and Owen Densmore tried out my demo applets to let me know whether they were any good and whether they ran properly in different browsers on various machine platforms (PCs, Macintoshes, and Sun workstations). Steve and I had a couple days of fun seeing how fast I could get my p programs to run.

I give extra special thanks to my technical reviewer, Wes Mitchell, another longtime friend who is currently an enterprise architect extraordinaire and formerly a mathematics and computer science professor. Wes made many suggestions for improving the text and caught some really embarrassing misstatements. (Any remaining errors are intentional—I want to see if you're paying attention.)

My agent from Waterside Productions, Danielle Jatlow, and my editor at Prentice Hall, Paul Petralia, got this project underway and kept it going.

I had a lot of fun writing this book and its programs, and I hope that comes through in the text. If you're inspired to learn more about any of the topics, then I will be very happy. You can send me e-mail at ron@apropos-logic.com or write to me at

Apropos Logic
P.O. Box 20884
San Jose, CA 95160

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)