Kalman Filtering and Neural Networks / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$128.77
Used and New from Other Sellers
Used and New from Other Sellers
from $108.94
Usually ships in 1-2 business days
(Save 31%)
Other sellers (Hardcover)
  • All (7) from $108.94   
  • New (4) from $128.76   
  • Used (3) from $108.94   

Overview

State-of-the-art coverage of Kalman filter methods for the design of neural networks

This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear.

The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover:

  • An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF)
  • Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes
  • The dual estimation problem
  • Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm
  • The unscented Kalman filter

Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.

An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.

Read More Show Less

Editorial Reviews

From the Publisher
"Although the traditional approach to the subject is usually linear, this book recognizes and deals with the fact that real problems are most often nonlinear." (SciTech Book News, Vol. 25, No. 4, December 2001)
Read More Show Less

Product Details

Meet the Author

SIMON HAYKIN, PhD, is Professor of Electrical Engineering at the Communication Research Laboratory of McMaster University in Hamilton, Ontario, Canada.

Read More Show Less

Table of Contents

Preface.

Contributors.

Kalman Filters (S. Haykin).

Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp).

Learning Shape and Motion from Image Sequences (G. Patel, et al.).

Chaotic Dynamics (G. Patel and S. Haykin).

Dual Extended Kalman Filter Methods (E. Wan and A. Nelson).

Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani).

The Unscencted Kalman Filter (E. Wan and R. van der Merwe).

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)