Kinematic Modeling, Identification, and Control of Robotic Manipulators / Edition 1

Kinematic Modeling, Identification, and Control of Robotic Manipulators / Edition 1

by Henry W. Stone, Peter Chinloy
     
 

Product Details

ISBN-13:
9780898382372
Publisher:
Springer US
Publication date:
09/30/1987
Series:
The Springer International Series in Engineering and Computer Science, #29
Edition description:
1987
Pages:
224
Product dimensions:
0.69(w) x 6.14(h) x 9.21(d)

Meet the Author

Table of Contents

1. Introduction.- 1.1. Overview.- 1.2. Motivation.- 1.3. Dissertation Goals and Contributions.- 1.4. Dissertation Outline.- 2. Review of Robot Kinematics, Identification, and Control.- 2.1. Overview.- 2.2. Coordinate Frame Kinematic Models.- 2.2.1. Denavit-Hartenberg Model.- 2.2.2. Whitney-Lozinski Model.- 2.3. Models of Revolute Joint Manipulators.- 2.4. Modeling Assumptions.- 2.5. Kinematic Identification.- 2.6. Kinematic Control.- 2.7. Conclusions.- 3. Formulation of the S-Model.- 3.1. Overview.- 3.2. S-Model.- 3.3. Computing S-Model Parameters.- 3.4.Conclusions.- 4. Kinematic Identification.- 4.1. Overview.- 4.2.Kinematic Features.- 4.3 S-Model Identification.- 4.3.1. Overview.- 4.3.1.1. Feature Identification.- 4.3.1.2. Link Coordinate Frame Specification.- 4.3.1.3. S-Model Parameter Computation.- 4.3.1.4. Denavit-Hartenberg Parameter Extraction.- 4.3.2. Feature Identification.- 4.3.2.1. Plane-of-Rotation Estimation.- 4.3.2.2. Center-of-Rotation Estimation.- 4.3.2.3. Line-of-Translation Estimation.- 4.3.3. Link Coordinate Frame Specification.- 4.3.4. S-Model Parameters.- 4.3.5. Denavit-Hartenberg Parameters.- 4.4. Conclusions.- 5. Inverse Kinematics.- 5.1. Overview.- 5.2. Newton-Raphson Algorithm.- 5.3. Jacobi Iterative Method.- 5.4. Performance Evaluation.- 5.5. Comparative Computational Complexity.- 5.6. Conclusions.- 6. Prototype System and Performance Evaluation.- 6.1. Overview.- 6.2. System Overview.- 6.3. Sensor System.- 6.3.1. Description.- 6.4. Generating Features.- 6.5. Measuring Performance.- 6.5.1. One-Dimensional Grid.- 6.5.2. Two-Dimensional Grid.- 6.5.3. Three-Dimensional Grid.- 6.6. Kinematic Performance Evaluation.- 6.6.1. One-Dimensional Performance Evaluation.- 6.6.2. Two-Dimensional Performance Evaluation.- 6.6.3. Three-Dimensional Performance Evaluation.- 6.7. Conclusions.- 7. Performance Evaluation Based Upon Simulation.- 7.1. Overview.- 7.2. A Monte-Carlo Simulator.- 7.2.1. Evaluating Kinematic Performance.- 7.2.2. Design Model Control.- 7.2.3. Signature-Based Control.- 7.3. Simulator Verification.- 7.4. Results.- 7.4.1. Encoder Calibration Errors.- 7.4.2. Machining and Assembly Errors.- 7.4.3. Sensor Measurement Errors.- 7.4.4. Number of Measurements.- 7.4.5. Effect of Target Radius.- 7.5. Conclusions.- 8. Summary and Conclusions.- 8.1. Introduction.- 8.2. Summary and Contributions.- 8.3. Suggestions for Future Research.- Appendix A. Primitive Transformations.- Appendix B. Ideal Kinematics of the Puma 560.- B.1. Forward Kinematics.- B.2. Inverse Kinematics.- Appendix C. Inverse Kinematics.- C.1. Newton-Raphson Computations.- C.2. Jacobi Iterative Computations.- Appendix D. Identified Arm Signtaures.- Appendix E. Sensor Calibration.- E.1. Calibration Rods.- E.2. Slant Range Compensation.- Appendix F. Simulator Components.- F.1. Robot Manufacturing Error Model.- F.2. Simulator Input Parameters.- Appendix G. Simulation Results.- G.1. Encoder Calibration Errors.- G.2. Machining and Assembly Errors.- G.3. Sensor Measurement Errors.- G.4. Number of Measurements.- G.5. Target Radius.- References.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >