Knocking on Heaven's Door: How Physics and Scientific Thinking Illuminate the Universe and the Modern World [With Earbuds]


"Science has a battle for hearts and minds on its hands….How good it feels to have Lisa Randall's unusual blend of top flight science, clarity, and charm on our side."
—Richard Dawkins

"Dazzling ideas….Read this book today to understand the science of tomorrow."
—Steven Pinker

The bestselling author of Warped Passages, one of Time magazine's "100 Most Influential People in the World," and one of Esquire's "75 Most Influential People of the 21st...

See more details below
This Audiobook (Other) is Not Available through
Sending request ...


"Science has a battle for hearts and minds on its hands….How good it feels to have Lisa Randall's unusual blend of top flight science, clarity, and charm on our side."
—Richard Dawkins

"Dazzling ideas….Read this book today to understand the science of tomorrow."
—Steven Pinker

The bestselling author of Warped Passages, one of Time magazine's "100 Most Influential People in the World," and one of Esquire's "75 Most Influential People of the 21st Century,"  Lisa Randall gives us an exhilarating overview of the latest ideas in physics and offers a rousing defense of the role of science in our lives. Featuring fascinating insights into our scientific future born from the author's provocative conversations with Nate Silver, David Chang, and Scott Derrickson, Knocking on Heaven's Door is eminently readable, one of the most important popular science books of this or any year. It is a necessary volume for all who admire the work of Stephen Hawking, Michio Kaku, Brian Greene, Simon Singh, and Carl Sagan; for anyone curious about the workings and aims of the Large Hadron Collider, the biggest and most expensive machine ever built by mankind; for those who firmly believe in the importance of science and rational thought; and for anyone interested in how the Universe began…and how it might ultimately end.

Read More Show Less

Editorial Reviews

From Barnes & Noble

If you catch yourself thinking that contemporary physics is a miraculous sideshow that lacks relevance in our lives, Lisa Randall's Knocking on Heaven's Door will awaken you into a whole new world. Her exhilarating tour of recent breakthrough ideas has already drawn praise from advance thinkers such as Richard Dawkins and Steven Pinker, who praised her for "dazzling ideas.... Read this book today to understand the science of tomorrow." But perhaps the book's major contribution is its zestful defense of the importance of science for rational thought and rational actions. A natural choice for general science readers. (P.S. Time tabbed Lisa Randall as one of the world's 100 most influential people.)

Publishers Weekly
Dispelling the idea that science is based on unchanging rules, Harvard physicist Randall (Warped Passages) offers an insider's view of modern physics, a vital, continually "evolving body of knowledge" in which previous ideas are always open to change—or even disposal, when researchers discover a theory which better fits observational evidence. While acknowledging art and religion as different ways to search for truth, Randall celebrates how science "seeks objective and verifiable truth" through careful observation and measurement. As our technology allows our view of the world to expand, the range of things we can observe also expands, from what we can see with our naked eye to the world of subatomic particles and forces studied by particle physicists. The Large Hadron Collider is the biggest, most complex tool yet built to parse this tiny world to answer some of physics' biggest questions: the source of mass and gravity, the secrets behind dark matter and dark energy, and the underlying structure of the universe. Randall's witty, accessible discussion reveals the effort and wonder at hand as scientists strive to learn who we are and where we came from. 75 b&w illus. (Sept.)
American Scientist
“Valuable and engaging. . . . Randall’s generous cornucopia of ideas, her engaging style, and above all her deep excitement about physics make this a book that deserves a wide readership.”
Booklist (starred review)
“The general reader’s indispensable passport to the frontiers of science.”
Daily Beast
“Randall manages to transform . . . experiments at distant and unfamiliar scales into crucial acts in a cosmic drama.”
Daily Texan
“An exciting read about the very edge of modern science. . . . [Knocking on Heaven’s Door] inspires a sense of awe, appreciation and excitement for what the future holds.”
“[Randall’s] eloquent book details the trials and tribulations of the [Large Hadron Collider], from conception to implementation, and takes us on a grand tour of the underlying science.”
New York Journal of Books
“Randall’s passion and excitement for science and physics is infectious and welcome in our digital age.”
New York Times Book Review
“[Randall is] one of the more original theorists at work in the profession today. . . . She gives a fine analysis of the affinity between scientific and artistic beauty, comparing the broken symmetries of a Richard Serra sculpture to those at the core of the Standard Model.”
“Startlingly honest [and] beautifully written. . . . Randall’s calm authority and clarity of explanation are exemplary. . . . Like being taken behind the curtain in Oz and given a full tour by the wizard.”
Richard Dawkins
“Science has a battle for hearts and minds on its hands . . . against superstition and ignorance on one flank, and against pseudo-intellectual obscurantism on the other. How good it feels to have Lisa Randall’s unusual blend of top flight science, clarity, and charm on our side.”
Sunday Times (London)
“Written with dry wit and ice-cool clarity. . . . Knocking on Heaven’s Door is a book that anyone at all interested in science must read. This is surely the science book of the year.”
The Independent on Sunday
“Full of passion and jaw-dropping facts. . . . A fascinating account of modern particle physics, both theoretical and practical.”
Time magazine
“Explores some of the biggest ideas in contemporary physics and how they undergird such everyday matters as risk assessment, logic and even our understanding of beauty.”
Times Higher Education (London)
“Beautifully written. . . . An impressive overview of what scientists (of any kind) get up to, how they work and why science is an inherently creative endeavor.”
Library Journal
In Randall's (physics, Harvard Univ.) second book written for a general audience (after Warped Passages), several major themes are woven together to depict the state of physics in the 21st century. Among other subjects, Randall covers the significance of scale in physics, describes the Large Hadron Collider (LHC, a gigantic particle accelerator that sprawls across the Swiss-French border), and discusses how experimental results from the LHC may guide the future development of physics and cosmology. In particular, there is hope the LHC will improve our knowledge of the entities known as "dark matter" and "dark energy," which together are believed to make up 96 percent of the universe. VERDICT Although these topics may seem abstruse, Randall has an accessible style and does not demand that her readers come armed with an advanced knowledge of mathematics or modern physics. This volume should appeal to experts and nonexperts alike intrigued by the latest scientific advances in our understanding of the cosmos. [See Prepub Alert, 3/14/11.]—Jack W. Weigel, Ann Arbor, MI
Kirkus Reviews

From Randall (Theoretical Physics/Harvard Univ.; Warped Passages: Unraveling the Universe's Hidden Dimensions, 2006), a whip-smart inquiry into the scientific work being conducted in particle physics.

The author examines some fairly recondite material—the philosophical and methodological underpinnings of the study of elementary particles (with a brief foray into cosmology)—and renders it comprehensible for general readers. She brings a thrumming enthusiasm to the topic, but she is unhurried and wryly humorous. She explains how physicists conduct their theoretical studies, the logic involved and the confidence that comes only in what's verified or deduced through experimentation. That knowledge must always be open to change, surrounded as it is by an amorphous boundary of uncertainties, where research is conducted in a state of indeterminacy, testing and questioning to ascertain veracity and implications (which includes investigating the likes of string theory, which doesn't yield experimental consequences but may provide new ways of thinking). Randall brings great clarity to the application of theory. Not only will readers come to feel comfortably familiar with scaling—why, for instance, Newton's laws work on one scale but not another—or how the Large Hadron Collider will provide access to fundamental particles, but appreciate how one "sees" a subatomic particle when visible light's wavelength is too big to resolve it. While much of the book concerns the behavior of quarks, leptons and gauge bosons, the author ranges freely into the advantages and disadvantages of aesthetic criteria in science, the importance of symmetry and the creation and nature of black holes, black energy and black matter: "Why should all matter interact with light? If the history of science has taught us anything, it should be the shortsightedness of believing that what we see is all there is."

A tour of subatomic physics that dazzles like the stars.

Read More Show Less

Product Details

  • ISBN-13: 9781615878772
  • Publisher: Findaway World
  • Publication date: 1/28/2012
  • Series: Playaway Adult Nonfiction Series
  • Format: Other
  • Product dimensions: 5.40 (w) x 7.30 (h) x 1.00 (d)

Meet the Author

Lisa Randall studies theoretical particle physics and cosmology at Harvard University, where she is Frank J. Baird, Jr., Professor of Science. Her work has made her among the most cited and influential theoretical physicists today, and has been featured in Discover, the Economist, Newsweek, Scientific American, and many top-ranked scientific journals. She has been one of Time magazine's "100 Most Influential People" and Rolling Stone's "RS100: Agents of Change," and her first book, Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions, was named a New York Times Notable Book in 2005. She is a member of the National Academy of Sciences, the American Philosophical Society, and the American Academy of Arts and Sciences. When not solving the problems of the universe, Randall can be found rock climbing, skiing, or contributing to art-science connections. Her libretto for Hypermusic Prologue premiered at the Pompidou Center in Paris in 2009.

Read More Show Less

Read an Excerpt

Knocking on Heaven's Door

How Physics and Scientific Thinking Illuminate the Universe and the Modern World
By Lisa Randall


Copyright © 2011 Lisa Randall
All right reserved.

ISBN: 9780061723728

Chapter One

Among the many reasons I chose to pursue physics was the desire to do
something that would have a permanent impact. If I was going to invest
so much time, energy, and commitment, I wanted it to be for something
with a claim to longevity and truth. Like most people, I thought of scientific
advances as ideas that stand the test of time.
My friend Anna Christina Büchmann studied English in college
while I majored in physics. Ironically, she studied literature for the same
reason that drew me to math and science. She loved the way an insightful
story lasts for centuries. When discussing Henry Fielding's novel Tom
Jones with her many years later, I learned that the edition I had read and
thoroughly enjoyed was the one she helped annotate when she was in
graduate school.
Tom Jones was published 250 years ago, yet its themes and wit resonate
to this day. During my first visit to Japan, I read the far older
Tale of Genji and marveled at its characters' immediacy too, despite the
thousand years that have elapsed since Murasaki Shikibu wrote about
them. Homer created the Odyssey roughly 2,000 years earlier. Yet
notwithstanding its very different age and context, we continue to relish the
tale of Odysseus's journey and its timeless descriptions of human nature.
Scientists rarely read such old—let alone ancient—scientific texts.
We usually leave that to historians and literary critics. We nonetheless
apply the knowledge that has been acquired over time, whether from
Newton in the seventeenth century or Copernicus more than 100 years
earlier still. We might neglect the books themselves, but we are careful
to preserve the important ideas they may contain.
Science certainly is not the static statement of universal laws we all
hear about in elementary school. Nor is it a set of arbitrary rules. Science
is an evolving body of knowledge. Many of the ideas we are currently
investigating will prove to be wrong or incomplete. Scientific descriptions
certainly change as we cross the boundaries that circumscribe what we
know and venture into more remote territory where we can glimpse hints
of the deeper truths beyond.
The paradox scientists have to contend with is that while aiming for
permanence, we often investigate ideas that experimental data or better
understanding will force us to modify or discard. The sound core of
knowledge that has been tested and relied on is always surrounded by
an amorphous boundary of uncertainties that are the domain of current
research. The ideas and suggestions that excite us today will soon be
forgotten if they are invalidated by more persuasive or comprehensive
experimental work tomorrow.
When the 2008 Republican presidential candidate Mike Huckabee
sided with religion over science— in part because scientific "beliefs" change whereas
Christians take as their authority an eternal, unchanging God—he was not entirely misguided,
at least in his characterization.
The universe evolves and so does our scientific knowledge of it. Over
time, scientists peel away layers of reality to expose what lies beneath
the surface. We broaden and enrich our understanding as we probe
increasingly remote scales. Knowledge advances and the unexplored region
recedes when we reach these difficult to access distances. Scientific "beliefs"
then evolve in accordance with our expanded knowledge.
Nonetheless, even when improved technology makes a broader range
of observations possible, we don't necessarily just abandon the theories
that made successful predictions for the distances and energies, or speeds
and densities, that were accessible in the past. Scientific theories grow and
expand to absorb increased knowledge, while retaining the reliable parts
of ideas that came before. Science thereby incorporates old established
knowledge into the more comprehensive picture that emerges from a
broader range of experimental and theoretical observations. Such changes
don't necessarily mean the old rules are wrong, but they can mean, for
example, that those rules no longer apply on smaller scales where new
components have been revealed. Knowledge can thereby embrace old ideas
yet expand over time, even though very likely more will always remain
to be explored. Just as travel can be compelling— even if you will never
visit every place on the planet (never mind the cosmos)— increasing our
understanding of matter and of the universe enriches our existence. The
remaining unknowns serve to inspire further investigations.
My own research field of particle physics investigates increasingly
smaller distances in order to study successively tinier components of
matter. Current experimental and theoretical research attempt to expose
what matter conceals—that which is embedded ever deeper inside. But
despite the often-heard analogy, matter is not simply like a Russian
matryoshka doll, with similar elements replicated at successively smaller
scales. What makes investigating increasingly minuscule distances
interesting is that the rules can change as we reach new domains. New forces
and interactions might appear at those scales whose impact was too tiny
to detect at the larger distances previously investigated.
The notion of scale, which tells physicists the range of sizes or energies
that are relevant for any particular investigation, is critical to the
understanding of scientific progress—as well as to many other aspects of the
world around us. By partitioning the universe into different comprehensible sizes,
we learn that the laws of physics that work best aren't
necessarily the same for all processes. We have to relate concepts that
apply better on one scale to those more useful at another. Categorizing in
this way lets us incorporate everything we know into a consistent picture
while allowing for radical changes in descriptions at different lengths.
In this chapter, we'll see how partitioning by scale—whichever scale
is relevant—helps clarify our thinking—both scientific and otherwise—
and why the subtle properties of the building blocks of matter are so hard
to notice at the distances we encounter in our everyday lives. In doing
so, this chapter also elaborates on the meaning of "right" and "wrong" in

science, and why even apparently radical discoveries don't necessarily
force dramatic changes on the scales with which we are already familiar.
People too often confuse evolving scientific knowledge with no knowledge
at all and mistake a situation in which we are discovering new physical
laws with a total absence of reliable rules. A conversation with the
screenwriter Scott Derrickson during a recent visit to California helped
me to crystallize the origin of some of these misunderstandings. At the
time, Scott was working on a couple of movie scripts that proposed
potential connections between science and phenomena that he suspected
scientists would probably dismiss as supernatural. Eager to avoid major
solecisms, Scott wanted to do scientific justice to his imaginative story
ideas by having them scrutinized by a physicist—namely me. So we met
for lunch at an outdoor café in order to share our thoughts along with the
pleasures of a sunny Los Angeles afternoon.
Knowing that screenwriters often misrepresent science, Scott wanted
his particular ghost and time-travel stories to be written with a reasonable
amount of scientific credibility. The particular challenge that he as
a screenwriter faced was his need to present his audience not just with
interesting new phenomena, but also with ones that would translate
effectively to a movie screen. Although not trained in science, Scott was
quick and receptive to new ideas. So I explained to him why, despite the
ingenuity and entertainment value of some of his story lines, the
constraints of physics made them scientificcally untenable.
Scott responded that scientists have often thought certain phenomena
impossible that later turned out to be true. "Didn't scientists formerly
disbelieve what relativity now tells us?" "Who would have thought
randomness played any role in fundamental physical laws?" Despite
his great respect for science, Scott still wondered if—given its evolving
nature— scientists aren't sometimes wrong about the implications and
limitations of their discoveries.
Some critics go even further, asserting that although scientists can
predict a great deal, the reliability of those predictions is invariably suspect.
Skeptics insist, notwithstanding scientific evidence, that there
could always be a catch or a loophole. Perhaps people could come back
from the dead or at the very least enter a portal into the Middle Ages or
into Middle-earth. These doubters simply don't trust the claims of science
that a thing is definitively impossible.
However, despite the wisdom of keeping an open mind and recognizing
that new discoveries await, a deep fallacy is buried in this logic. The
problem becomes clear when we dissect the meaning of such statements
as those above and, in particular, apply the notion of scale. These questions
ignore the fact that although there will always exist unexplored
distance or energy ranges where the laws of physics might change, we
know the laws of physics on human scales extremely well. We have had
ample opportunity to test these laws over the centuries.
When I met the choreographer Elizabeth Streb at the Whitney Museum,-
where we both spoke on a panel on the topic of creativity, she too
underestimated the robustness of scientific knowledge on human scales.
Elizabeth posed a similar question to those Scott had asked: "Could the
tiny dimensions proposed by physicists and curled up to an unimaginably
small size nonetheless affect the motion of our bodies?"
Her work is wonderful, and her inquiries into the basic assumptions
about dance and movement are fascinating. But the reason we cannot
determine whether new dimensions exist, or what their role would be
even if they did, is that they are too small or too warped for us to be able
to detect. By that I mean that we haven't yet identified their influence on
any quantity that we have so far observed, even with extremely detailed
measurements. Only if the consequences of extra dimensions for physical
phenomena were vastly bigger could they discernibly influence anyone's
motion. And if they did have such a significant impact, we would
already have observed their effects. We therefore know that the fundamentals
of choreography won't change even when our understanding of
quantum gravity improves. Its effects are far too suppressed relative to
anything perceptible on a human scale.
When scientists have turned out to be wrong in the past, it was often
because they hadn't yet explored very tiny or very large distances or
extremely high energies or speeds. That didn't mean that, like Luddites, they
had closed their minds to the possibility of progress. It meant only that
they trusted their most up-to-date mathematical descriptions of the world
and their successful predictions of then observable objects and behaviors.
Phenomena they thought were impossible could and sometimes did occur
at distances or speeds these scientists had never before experienced— or
tested. But of course they couldn't yet have known about new ideas and
theories that would ultimately prevail in the regimes of those tiny
distances or enormous energies with which they were not yet familiar.
When scientists say we know something, we mean only that we have
certain ideas and theories whose predictions have been well tested over a
certain range of distances or energies. These ideas and theories are not
necessarily the eternal laws for the ages or the most fundamental of physical
laws. They are rules that apply as well as any experiment could possibly
test, over the range of parameters available to current technology. This
doesn't mean that these laws will never be overtaken by new ones.
Newton's laws are instrumental and correct, but they cease to apply at or near
the speed of light where Einstein's theory applies. Newton's laws are at the
same time both correct and incomplete. They apply over a limited domain.
The more advanced knowledge that we gain through better measurements
really is an improvement that illuminates new and different
underlying concepts. We now know about many phenomena that the
ancients could not have derived or discovered with their more limited
observational techniques. So Scott was right that sometimes scientists have
been wrong—thinking phenomena impossible that in the end turned
out to be perfectly true. But this doesn't mean there are no rules. Ghosts
and time travelers won't appear in our houses, and alien creatures won't
suddenly emerge from our walls. Extra dimensions of space might exist,
but they would have to be tiny or warped or otherwise currently hidden
from view in order for us to explain why they have not yet yielded any
noticeable evidence of their existence.
Exotic phenomena might indeed occur. But such phenomena will
happen only at difficult to observe scales that are increasingly far from
our intuitive understanding and our usual perceptions. If they will always
remain inaccessible, they are not so interesting to scientists. And
they are less interesting to fiction writers too if they won't have any
observable impact on our daily lives.
Weird things are possible, but the ones non-physicists are understandably
most interested in are the ones we can observe. As Steven Spielberg
pointed out in a discussion about a science fiction movie he was considering,
a strange world that can't be presented on a movie screen—and
which the characters in a film would never experience—is not so interesting
to a viewer. (Figure 1 shows amusing evidence.) Only a new world
that we can access and be aware of could be. Even though both require
imagination, abstract ideas and fiction are different and have different
goals. Scientific ideas might apply to regimes that are too remote to be of
interest to a film, or to our daily observations, but they are nonetheless
essential to our description of the physical world.
[ FIGURE 1 ] An XKCD comic that captures the hidden nature of tiny
rolled-up dimensions.
Despite this neat separation by distances, people too often take shortcuts
when trying to understand difficult science and the world. And that can
easily lead to an overzealous application of theories. Such misapplication
of science is not a new phenomenon. In the eighteenth century, when
scientists were busy studying magnetism in laboratories, others conjured up
the notion of "animal magnetism"— a hypothesized magnetic "vital fluid"
in animate beings. It took a French royal commission set up by Louis XVI
in 1784, which included Benjamin Franklin among others, to formally
debunk the hypothesis.


Excerpted from Knocking on Heaven's Door by Lisa Randall Copyright © 2011 by Lisa Randall. Excerpted by permission of Ecco. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)