Knowledge Discovery with Support Vector Machines / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $96.33
Usually ships in 1-2 business days
(Save 25%)
Other sellers (Hardcover)
  • All (6) from $96.33   
  • New (4) from $96.33   
  • Used (2) from $133.13   


An easy-to-follow introduction to support vector machines

This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover:

  • Knowledge discovery environments
  • Describing data mathematically
  • Linear decision surfaces and functions
  • Perceptron learning
  • Maximum margin classifiers
  • Support vector machines
  • Elements of statistical learning theory
  • Multi-class classification
  • Regression with support vector machines
  • Novelty detection

Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Read More Show Less

Product Details

Meet the Author

Lutz Hamel, PhD, teaches at the University of Rhode Island, where he founded the machine learning and data mining group. His major research interests are computational logic, machine learning, evolutionary computation, data mining, bioinformatics, and computational structures in art and literature.

Read More Show Less

Table of Contents



1 What is Knowledge Discovery?

1.1 Machine Learning.

1.2 The Structure of the Universe X.

1.3 Inductive Learning.

1.4 Model Representations.


Bibliographic Notes.

2 Knowledge Discovery Environments.

2.1 Computational Aspects of Knowledge Discovery.

2.1.1 Data Access.

2.1.2 Visualization.

2.1.3 Data Manipulation.

2.1.4 Model Building and Evaluation.

2.1.5 Model Deployment.

2.2 Other Toolsets.


Bibliographic Notes.

3 Describing Data Mathematically.

3.1 From Data Sets to Vector Spaces.

3.1.1 Vectors.

3.1.2 Vector Spaces.

3.2 The Dot Product as a Similarity Score.

3.3 Lines, Planes, and Hyperplanes.


Bibliographic Notes.

4 Linear Decision Surfaces and Functions.

4.1 From Data Sets to Decision Functions.

4.1.1 Linear Decision Surfaces through the Origin.

4.1.2 Decision Surfaces with an Offset Term.

4.2 A Simple Learning Algorithm.

4.3 Discussion.


Bibliographic Notes.

5 Perceptron Learning.

5.1 Perceptron Architecture and Training.

5.2 Duality.

5.3 Discussion.


Bibliographic Notes.

6 Maximum Margin Classifiers.

6.1 Optimization Problems.

6.2 Maximum Margins.

6.3 Optimizing the Margin.

6.4 Quadratic Programming.

6.5 Discussion.


Bibliographic Notes.


7 Support Vector Machines.

7.1 The Lagrangian Dual.

7.2 Dual MaximumMargin Optimization.

7.2.1 The Dual Decision Function.

7.3 Linear Support Vector Machines.

7.4 Non-Linear Support Vector Machines.

7.4.1 The Kernel Trick.

7.4.2 Feature Search.

7.4.3 A Closer Look at Kernels.

7.5 Soft-Margin Classifiers.

7.5.1 The Dual Setting for Soft-Margin Classifiers.

7.6 Tool Support.

7.6.1 WEKA.

7.6.2 R.

7.7 Discussion.


Bibliographic Notes.

8 Implementation.

8.1 Gradient Ascent.

8.1.1 The Kernel-Adatron Algorithm.

8.2 Quadratic Programming.

8.2.1 Chunking.

8.3 Sequential Minimal Optimization.

8.4 Discussion.


Bibliographic Notes.

9 Evaluating What has been Learned.

9.1 Performance Metrics.

9.1.1 The Confusion Matrix.

9.2 Model Evaluation.

9.2.1 The Hold-Out Method.

9.2.2 The Leave-One-Out Method.

9.2.3 N-Fold Cross-Validation.

9.3 Error Confidence Intervals.

9.3.1 Model Comparisons.

9.4 Model Evaluation in Practice.

9.4.1 WEKA.

9.4.2 R.


Bibliographic Notes.

10 Elements of Statistical Learning Theory.

10.1 The VC-Dimension and Model Complexity.

10.2 A Theoretical Setting for Machine Learning.

10.3 Empirical Risk Minimization.

10.4 VC-Confidence.

10.5 Structural Risk Minimization.

10.6 Discussion.


Bibliographic Notes.


11 Multi-Class Classification.

11.1 One-versus-the-Rest Classification.

11.2 Pairwise Classification.

11.3 Discussion.


Bibliographic Notes.

12 Regression with Support Vector Machines.

12.1 Regression as Machine Learning.

12.2 Simple and Multiple Linear Regression.

12.3 Regression with Maximum Margin Machines.

12.4 Regression with Support Vector Machines.

12.5 Model Evaluation.

12.6 Tool Support.

12.6.1 WEKA.

12.6.2 R.


Bibliographic Notes.

13 Novelty Detection.

13.1 Maximum Margin Machines.

13.2 The Dual Setting.

13.3 Novelty Detection in R.


Bibliographic Notes.

Appendix A: Notation.

Appendix B: A Tutorial Introduction to R.

B.1 Programming Constructs.

B.2 Data Constructs.

B.3 Basic Data Analysis.

Bibliographic Notes.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)