Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

1: Kumulative Verteilungsfunktion – Stellt die CDF und ihre grundlegende Rolle in der Wahrscheinlichkeitsrechnung vor.


2: Cauchy-Verteilung – Untersucht diese wichtige Wahrscheinlichkeitsverteilung und ihre Anwendungen.


3: Erwarteter Wert – Bespricht das Konzept erwarteter Ergebnisse in statistischen Prozessen.


4: Zufallsvariable – Untersucht die Rolle von Zufallsvariablen in Wahrscheinlichkeitsmodellen.


5: Unabhängigkeit (Wahrscheinlichkeitstheorie) – Analysiert unabhängige Ereignisse und ihre Bedeutung.


6: Zentraler Grenzwertsatz – Beschreibt die Auswirkungen dieses grundlegenden Theorems auf die Datenapproximation.


7: Wahrscheinlichkeitsdichtefunktion – Umreißt das PDF und seine Verbindung zu kontinuierlichen Verteilungen.


8: Konvergenz von Zufallsvariablen – Erklärt Konvergenztypen und ihre Bedeutung in der Robotik.


9: Momentgenerierende Funktion – Behandelt Funktionen, die Verteilungseigenschaften zusammenfassen.


10: Wahrscheinlichkeitsgenerierende Funktion – Stellt generierende Funktionen in der Wahrscheinlichkeitsrechnung vor.


11: Bedingte Erwartung – Untersucht erwartete Werte unter bestimmten bekannten Bedingungen.


12: Gemeinsame Wahrscheinlichkeitsverteilung – Beschreibt die Wahrscheinlichkeit mehrerer zufälliger Ereignisse.


13: Lévy-Verteilung – Untersucht diese Verteilung und ihre Relevanz in der Robotik.


14: Erneuerungstheorie – Untersucht die Theorie, die für die Modellierung sich wiederholender Ereignisse in der Robotik entscheidend ist.


15: Dynkin-System – Erörtert die Rolle dieses Systems in der Wahrscheinlichkeitsstruktur.


16: Empirische Verteilungsfunktion – Betrachtet die Schätzung der Verteilung auf Grundlage von Daten.


17: Charakteristische Funktion – Analysiert Funktionen, die Verteilungseigenschaften erfassen.


18: Pi-System – Überprüft Pi-Systeme zum Erstellen von Wahrscheinlichkeitsmaßen.


19: Wahrscheinlichkeitsintegraltransformation – Führt die Transformation von Zufallsvariablen ein.


20: Beweise für die Konvergenz von Zufallsvariablen – Bietet Beweise, die für die Zuverlässigkeit der Robotik unerlässlich sind.


21: Faltung von Wahrscheinlichkeitsverteilungen – Untersucht die Kombination von Verteilungen in der Robotik.

1146722295
Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

1: Kumulative Verteilungsfunktion – Stellt die CDF und ihre grundlegende Rolle in der Wahrscheinlichkeitsrechnung vor.


2: Cauchy-Verteilung – Untersucht diese wichtige Wahrscheinlichkeitsverteilung und ihre Anwendungen.


3: Erwarteter Wert – Bespricht das Konzept erwarteter Ergebnisse in statistischen Prozessen.


4: Zufallsvariable – Untersucht die Rolle von Zufallsvariablen in Wahrscheinlichkeitsmodellen.


5: Unabhängigkeit (Wahrscheinlichkeitstheorie) – Analysiert unabhängige Ereignisse und ihre Bedeutung.


6: Zentraler Grenzwertsatz – Beschreibt die Auswirkungen dieses grundlegenden Theorems auf die Datenapproximation.


7: Wahrscheinlichkeitsdichtefunktion – Umreißt das PDF und seine Verbindung zu kontinuierlichen Verteilungen.


8: Konvergenz von Zufallsvariablen – Erklärt Konvergenztypen und ihre Bedeutung in der Robotik.


9: Momentgenerierende Funktion – Behandelt Funktionen, die Verteilungseigenschaften zusammenfassen.


10: Wahrscheinlichkeitsgenerierende Funktion – Stellt generierende Funktionen in der Wahrscheinlichkeitsrechnung vor.


11: Bedingte Erwartung – Untersucht erwartete Werte unter bestimmten bekannten Bedingungen.


12: Gemeinsame Wahrscheinlichkeitsverteilung – Beschreibt die Wahrscheinlichkeit mehrerer zufälliger Ereignisse.


13: Lévy-Verteilung – Untersucht diese Verteilung und ihre Relevanz in der Robotik.


14: Erneuerungstheorie – Untersucht die Theorie, die für die Modellierung sich wiederholender Ereignisse in der Robotik entscheidend ist.


15: Dynkin-System – Erörtert die Rolle dieses Systems in der Wahrscheinlichkeitsstruktur.


16: Empirische Verteilungsfunktion – Betrachtet die Schätzung der Verteilung auf Grundlage von Daten.


17: Charakteristische Funktion – Analysiert Funktionen, die Verteilungseigenschaften erfassen.


18: Pi-System – Überprüft Pi-Systeme zum Erstellen von Wahrscheinlichkeitsmaßen.


19: Wahrscheinlichkeitsintegraltransformation – Führt die Transformation von Zufallsvariablen ein.


20: Beweise für die Konvergenz von Zufallsvariablen – Bietet Beweise, die für die Zuverlässigkeit der Robotik unerlässlich sind.


21: Faltung von Wahrscheinlichkeitsverteilungen – Untersucht die Kombination von Verteilungen in der Robotik.

7.49 In Stock
Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

Kumulative Verteilungsfunktion: Ein mathematischer Ansatz zur probabilistischen Modellierung in der Robotik

eBook

$7.49 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

1: Kumulative Verteilungsfunktion – Stellt die CDF und ihre grundlegende Rolle in der Wahrscheinlichkeitsrechnung vor.


2: Cauchy-Verteilung – Untersucht diese wichtige Wahrscheinlichkeitsverteilung und ihre Anwendungen.


3: Erwarteter Wert – Bespricht das Konzept erwarteter Ergebnisse in statistischen Prozessen.


4: Zufallsvariable – Untersucht die Rolle von Zufallsvariablen in Wahrscheinlichkeitsmodellen.


5: Unabhängigkeit (Wahrscheinlichkeitstheorie) – Analysiert unabhängige Ereignisse und ihre Bedeutung.


6: Zentraler Grenzwertsatz – Beschreibt die Auswirkungen dieses grundlegenden Theorems auf die Datenapproximation.


7: Wahrscheinlichkeitsdichtefunktion – Umreißt das PDF und seine Verbindung zu kontinuierlichen Verteilungen.


8: Konvergenz von Zufallsvariablen – Erklärt Konvergenztypen und ihre Bedeutung in der Robotik.


9: Momentgenerierende Funktion – Behandelt Funktionen, die Verteilungseigenschaften zusammenfassen.


10: Wahrscheinlichkeitsgenerierende Funktion – Stellt generierende Funktionen in der Wahrscheinlichkeitsrechnung vor.


11: Bedingte Erwartung – Untersucht erwartete Werte unter bestimmten bekannten Bedingungen.


12: Gemeinsame Wahrscheinlichkeitsverteilung – Beschreibt die Wahrscheinlichkeit mehrerer zufälliger Ereignisse.


13: Lévy-Verteilung – Untersucht diese Verteilung und ihre Relevanz in der Robotik.


14: Erneuerungstheorie – Untersucht die Theorie, die für die Modellierung sich wiederholender Ereignisse in der Robotik entscheidend ist.


15: Dynkin-System – Erörtert die Rolle dieses Systems in der Wahrscheinlichkeitsstruktur.


16: Empirische Verteilungsfunktion – Betrachtet die Schätzung der Verteilung auf Grundlage von Daten.


17: Charakteristische Funktion – Analysiert Funktionen, die Verteilungseigenschaften erfassen.


18: Pi-System – Überprüft Pi-Systeme zum Erstellen von Wahrscheinlichkeitsmaßen.


19: Wahrscheinlichkeitsintegraltransformation – Führt die Transformation von Zufallsvariablen ein.


20: Beweise für die Konvergenz von Zufallsvariablen – Bietet Beweise, die für die Zuverlässigkeit der Robotik unerlässlich sind.


21: Faltung von Wahrscheinlichkeitsverteilungen – Untersucht die Kombination von Verteilungen in der Robotik.


Product Details

BN ID: 2940180971135
Publisher: Eine Milliarde Sachkundig [German]
Publication date: 12/17/2024
Series: Robotikwissenschaft [German] , #31
Sold by: PUBLISHDRIVE KFT
Format: eBook
Pages: 422
File size: 2 MB
Language: German
From the B&N Reads Blog

Customer Reviews