Lead-Free Solder Process Development / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$108.30
Used and New from Other Sellers
Used and New from Other Sellers
from $90.62
Usually ships in 1-2 business days
(Save 20%)
Other sellers (Hardcover)
  • All (6) from $90.62   
  • New (5) from $90.62   
  • Used (1) from $108.29   

Overview

"Lead-free Solder Process Development," covers a list of key topics including: legislation, soldering fluxes, SMT, wave, rework, alloys, component finishes, reliability, EDXRF, and standards. It is intended as a reference guide to engineers in the industry who are or who will be migrating to lead-free soldering. It is not intended to be an exhaustive review of the literature but to be a practical reference guide for selected, key subject areas. Each subject area is discussed by those who have conducted work in the field and can provide insight into what are the most important areas to consider. The book gives updates in areas for which research is ongoing, and addresses new topics which are relevant to lead-free soldering.

A practicing engineer will find the book of use as it goes into these topics in sufficient detail to make it informative and a good practical guide to address issues of concern in these areas. Chapters on Soldering Fluxes, Component Finishes, Alloys, EDXRF and certain areas on reliability have not been covered in sufficient detail in previous books, so the proposed book will be a timely reference for engineers in the field. The lead-free solder process window has been found to be smaller than for tin-lead, so a specific chapter is dedicated to Six Sigma process methodologies to help engineers approach lead-free soldering processes with better evaluation and process methodologies.

Read More Show Less

Product Details

  • ISBN-13: 9780470410745
  • Publisher: Wiley
  • Publication date: 3/15/2011
  • Edition number: 1
  • Pages: 284
  • Product dimensions: 6.10 (w) x 9.30 (h) x 0.90 (d)

Meet the Author

GREGORY HENSHALL is Master Engineer at Hewlett-Packard Company in Palo Alto, California. He has more than twenty years' experience in materials research and development, including twelve years of experience with soldering alloys and electronics manufacturing and nine years focused on lead-free technology. Dr. Henshall currently serves as chair for the iNEMI (International Electronics Manufacturing Initiative) Lead-Free Alloy Alternatives Project.

JASBIR BATH is the owner of Bath Technical Consultancy LLC in Fremont, California. He has over fifteen years' experience in research, design, development, and implementation in the areas of soldering, surface mount, and packaging technologies working for companies including Flextronics International/Solectron Corporation and ITRI (International Tin Research Institute). Bath has been chair of various iNEMI lead-free consortia involving OEMs, EMS, and component and material supplier companies on alloy selection, assembly, and rework.

CAROL A. HANDWERKER is the Reinhardt Schuhmann Jr. Professor of Materials Engineering at Purdue University, Indiana. Previously, she was chief of the Metallurgy Division at the National Institute of Standards and Technology (NIST), where she participated in the NCMS (National Center for Manufacturing Sciences) Lead-Free Solder Project and co-chaired the iNEMI Lead-Free Alloy Selection Team. Dr. Handwerker is currently active on the iNEMI Technical, Research, and Environmental Leadership Steering Committees, as well as a participant in a range of iNEMI project teams.

Read More Show Less

Table of Contents

Technical Reviewers.

Preface.

Introduction.

Contributors.

1. Regulatory and Voluntary Drivers for Environmental Improvement: Hazardous Substances, Lifecycle Design and End of Life (John Hawley).

1.1 Introduction.

1.2 Substances of Environmental Concern.

1.3 Design for Environment/Energy Efficiency.

1.4 Recycling and Take-back.

1.5 Summary.

1.6 References.

2. Lead-free Surface Mount Technology (Jasbir Bath, Jennifer Nguyen and Sundar Sethuraman).

2.1 Introduction.

2.2 No-clean and Water-soluble Lead-free Pastes.

2.3 Solder Paste Handling.

2.4 Board and Stencil Design.

2.5 Screen Printing and Printability of Lead-free Solder Pastes.

2.6 Paste inspection.

2.7 Component Placement (Paste Tackiness).

2.8 Reflow Soldering and the Reflow Profile.

2.9 Effect of Nitrogen versus Air Atmosphere during Lead-free Reflow.

2.10 Head-in-Pillow Component Soldering Defect.

2.11 Solder Joint Visual Inspection.

2.12 AOI (Automated Optical Inspection).

2.13 X-ray Inspection.

2.14 ICT/Functional Testing.

2.15 Conclusions.

2.16 Future Work.

2.17 Acknowledgements.

2.18 References.

3. Lead-free Wave Soldering (Dennis Barbini and Jasbir Bath).

3.0 Introduction.

3.1 Wave soldering process boundaries.

3.2 Soldering temperatures on the chip and main soldering waves.

3.3 Alloys for Lead-free Wave Soldering.

3.4 The function of nitrogen in wave soldering.

3.5 The effect of PCB Design on wave solder joint formation.

3.6 Standards related to wave soldering.

3.7 Conclusions.

3.8 Future work.

3.9 Acknowledgements.

3.10 References.

4. Lead-free Rework (Alan Donaldson).

4.1 Introduction.

4.2 Surface Mount Technology (SMT) Hand Soldering/Touch-up.

4.3 BGA/CSP Rework.

4.4 BGA Socket Rework.

4.5 X-ray.

4.6 Through-hole Hand Soldering Rework.

4.7 Through-hole Mini-pot/Solder Fountain Rework.

4.8 Best Practices and Rework Equipment Calibrations.

4.9 Conclusions.

4.10 Future Work.

4.11 References.

5 Lead-Free Alloys for BGA/CSP Components (Gregory A. Henshall).

5.1 Introduction.

5.2 Overview of New Lead-Free Alloys.

5.3 Benefits of New Alloys for BGAs and CSPs.

5.4 Technical Concerns .

5.5 Management of New Alloys.

5.6 Future Work.

5.7 Summary and Conclusions.

5.8 Acknowledgements.

5.9 References.

6 Growth Mechanisms and Mitigation Strategies of Tin Whisker Growth (Peng Su).

6.1 Introduction.

6.2 Role of stress in whisker growth.

6.3 Understanding standard acceleration tests.

6.4 Plating process optimization and other mitigation strategies.

6.5 Whisker growth on board-mounted components.

6.6 Summary.

6.7 References.

7. Testability of Lead-Free Printed Circuit Assemblies (Rosa D.Reinosa and Aileen M. Allen).

7.1 Introduction.

7.2 Contact Repeatability of Lead-Free Boards.

7.3 Probe Wear and Contamination.

7.4 Board Flexure.

7.5 Conclusions.

7.6 Acknowledgments.

7.7 References.

8. Board-Level Solder Joint Reliability of High Performance Computers under Mechanical Loading (Keith Newman).

8.1 Introduction.

8.2 Establishing PWB Strain Limits for Manufacturing.

8.3. SMT Component Fracture Strength Characterization.

8.4 PWB Fracture Strength Characterization.

8.5 PWB Strain Characterization.

8.6. Solder Joint Fracture Prediction – Modeling.

8.7. Fracture Strength Optimization.

8.8 Conclusions.

8.9 Acknowledgments.

8.10 References.

9. Lead-Free Reliability in Aerospace/Military Environments (Thomas A. Woodrow and Jasbir Bath).

9.1 Introduction.

9.2 Aerospace/Military Consortia.

9.3 Lead-Free Control Plans for Aerospace/Military Electronics.

9.4 Aerospace/Military Lead-Free Reliability Concerns.

9.5 Summary and Conclusions.

9.6 References.

10. Lead-Free Reliability in Automotive Environments (Richard D. Parke).

10.1 Introduction to Electronics in Automotive Environments.

10.2 Performance Risks and Issues.

10.3 Legislation Driving Lead-Free Automotive Electronics.

10.4 Reliability Requirements for Automotive Environments.

10.5 Failure Modes of Lead-free Joints.

10.6 Impact to Lead-free Component Procurement and Management.

10.7 Change versus Risks.

10.8 Summary and Conclusions.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)