Lebesgue Measure and Integration: An Introduction / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$163.00
Used and New from Other Sellers
Used and New from Other Sellers
from $163.44
Usually ships in 1-2 business days
(Save 18%)
Other sellers (Hardcover)
  • All (5) from $163.44   
  • New (4) from $166.38   
  • Used (1) from $163.44   

Overview

A superb text on the fundamentals of Lebesgue measure and integration.

This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration.

Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.

Read More Show Less

Editorial Reviews

Booknews
Focusing on the most fundamental concepts<-->Lebesgue measure for and Lebesgue integration for extended real-valued functions on <-->the author presents historical context and the preliminary concepts of undergraduate analysis, followed by discussions of topics such as measure theory, measurable functions, and integration. Intended for an advanced undergraduate analysis course or for a first- year graduate course in mathematics, statistics, probability, and other applied areas. Annotation c. by Book News, Inc., Portland, Or.
Read More Show Less

Product Details

Meet the Author

FRANK BURK teaches in the Department of Mathematics at California State University.

Read More Show Less

Table of Contents

Preface xi

Chapter 1. Historical Highlights 1

1.1 Rearrangements 2

1.2 Eudoxus (408-355 B.C.E.) and the Method of Exhaustion 3

1.3 The Lune of Hippocrates (430 B.C.E.) 5

1.4 Archimedes (287-212 B.C.E.) 7

1.5 Pierre Fermat (1601-1665)

1.6 Gottfried Leibnitz (1646-1716), Issac Newton (1642-1723) 12

1.7 Augustin-Louis Cauchy (1789-1857) 15

1.8 Bernhard Riemann (1826-1866) 17

1.9 Emile Borel (1871 -1956), Camille Jordan (1838-1922), Giuseppe Peano (1858-1932) 20

1.10 Henri Lebesgue (1875-1941), William Young (1863-1942) 22

1.11 Historical Summary 25

1.12 Why Lebesgue 26

Chapter 2. Preliminaries 32

2.1 Sets 32

2.2 Sequences of Sets 34

2.3 Functions 35

2.4 Real Numbers 42

2.5 Extended Real Numbers 49

2.6 Sequences of Real Numbers 51

2.7 Topological Concepts of R 62

2.8 Continuous Functions 66

2.9 Differentiable Functions 73

2.10 Sequences of Functions 75

Chapter 3. Lebesgue Measure 87

3.1 Length of Intervals 90

3.2 Lebesgue Outer Measure 93

3.3 Lebesgue Measurable Sets 100

3.4 BorelSets 112

3.5 "Measuring" 115

3.6 Structure of Lebesgue Measurable Sets 120

Chapter 4. Lebesgue Measurable Functions 126

4.1 Measurable Functions 126

4.2 Sequences of Measurable Functions 135

4.3 Approximating Measurable Functions 137

4.4 Almost Uniform Convergence 141

Chapter 5. Lebesgue Integration 147

5.1 The Riemann Integral 147

5.2 The Lebesgue Integral for Bounded Functions on Sets of Finite Measure 173

5.3 The Lebesgue Integral for Nonnegative Measurable Functions 194

5.4 The Lebesgue Integral and Lebesgue Integrability 224

5.5 Convergence Theorems 237

Appendix A. Cantor's Set 252

Appendix B. A Lebesgue Nonmeasurable Set 266

Appendix C. Lebesgue, Not Borel 273

Appendix D. A Space-Filling Curve 276

Appendix E. An Everywhere Continuous, Nowhere Differentiable,

Function 279

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)