Lie Algebras, Geometry, and Toda-Type Systems
Devoted to an important and popular branch of modern theoretical and mathematical physics, this book introduces the use of Lie algebra and differential geometry methods to study nonlinear integrable systems of Toda type. Many challenging problems in theoretical physics are related to the solution of nonlinear systems of partial differential equations. One of the most fruitful approaches in recent years has resulted from a merging of group algebraic and geometric techniques. The book gives a comprehensive introduction to this exciting branch of science. Chapters 1 and 2 review basic notions of Lie algebras and differential geometry with an emphasis on further applications to integrable nonlinear systems. Chapter 3 contains a derivation of Toda type systems and their general solutions based on Lie algebra and differential geometry methods. The last chapter examines explicit solutions of the corresponding equations. The book is written in an accessible "lecture note" style with many examples and exercises to illustrate key points and to reinforce understanding.
1100940034
Lie Algebras, Geometry, and Toda-Type Systems
Devoted to an important and popular branch of modern theoretical and mathematical physics, this book introduces the use of Lie algebra and differential geometry methods to study nonlinear integrable systems of Toda type. Many challenging problems in theoretical physics are related to the solution of nonlinear systems of partial differential equations. One of the most fruitful approaches in recent years has resulted from a merging of group algebraic and geometric techniques. The book gives a comprehensive introduction to this exciting branch of science. Chapters 1 and 2 review basic notions of Lie algebras and differential geometry with an emphasis on further applications to integrable nonlinear systems. Chapter 3 contains a derivation of Toda type systems and their general solutions based on Lie algebra and differential geometry methods. The last chapter examines explicit solutions of the corresponding equations. The book is written in an accessible "lecture note" style with many examples and exercises to illustrate key points and to reinforce understanding.
59.0 In Stock
Lie Algebras, Geometry, and Toda-Type Systems

Lie Algebras, Geometry, and Toda-Type Systems

Lie Algebras, Geometry, and Toda-Type Systems

Lie Algebras, Geometry, and Toda-Type Systems

Paperback

$59.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Devoted to an important and popular branch of modern theoretical and mathematical physics, this book introduces the use of Lie algebra and differential geometry methods to study nonlinear integrable systems of Toda type. Many challenging problems in theoretical physics are related to the solution of nonlinear systems of partial differential equations. One of the most fruitful approaches in recent years has resulted from a merging of group algebraic and geometric techniques. The book gives a comprehensive introduction to this exciting branch of science. Chapters 1 and 2 review basic notions of Lie algebras and differential geometry with an emphasis on further applications to integrable nonlinear systems. Chapter 3 contains a derivation of Toda type systems and their general solutions based on Lie algebra and differential geometry methods. The last chapter examines explicit solutions of the corresponding equations. The book is written in an accessible "lecture note" style with many examples and exercises to illustrate key points and to reinforce understanding.

Product Details

ISBN-13: 9780521479233
Publisher: Cambridge University Press
Publication date: 05/15/1997
Series: Cambridge Lecture Notes in Physics , #8
Pages: 268
Product dimensions: 5.94(w) x 8.94(h) x 0.59(d)

Table of Contents

Preface; 1. Introductory data on Lie algebras; 2. Basic notions of differential geometry; 3. Differential geometry of Toda type systems; 4. Toda type systems and their explicit solutions; References; Subject index.
From the B&N Reads Blog

Customer Reviews