×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Linear Algebra: A Modern Introduction / Edition 3
     

Linear Algebra: A Modern Introduction / Edition 3

by David Poole
 

See All Formats & Editions

ISBN-10: 0538735457

ISBN-13: 9780538735452

Pub. Date: 05/28/2010

Publisher: Cengage Learning


David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning.

Overview


David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems.

Product Details

ISBN-13:
9780538735452
Publisher:
Cengage Learning
Publication date:
05/28/2010
Series:
Available 2011 Titles Enhanced Web Assign Series
Pages:
768
Product dimensions:
8.20(w) x 10.10(h) x 1.40(d)

Table of Contents


1. VECTORS. Introduction: The Racetrack Game. The Geometry and Algebra of Vectors. Length and Angle: The Dot Product. Exploration: Vectors and Geometry. Lines and Planes. Exploration: The Cross Product. Applications: Force Vectors; Code Vectors. Vignette: The Codabar System. 2. SYSTEMS OF LINEAR EQUATIONS. Introduction: Triviality. Introduction to Systems of Linear Equations. Direct Methods for Solving Linear Systems. Exploration: Lies My Computer Told Me. Exploration: Partial Pivoting. Exploration: Counting Operations: An Introduction to the Analysis of Algorithms. Spanning Sets and Linear Independence. Applications: Allocation of Resources; Balancing Chemical Equations; Network Analysis; Electrical Networks; Linear Economic Models; Finite Linear Games. Vignette: The Global Positioning System. Iterative Methods for Solving Linear Systems. 3. MATRICES. Introduction: Matrices in Action. Matrix Operations. Matrix Algebra. The Inverse of a Matrix. The LU Factorization. Subspaces, Basis, Dimension, and Rank. Introduction to Linear Transformations. Vignette: Robotics. Applications: Markov Chains; Linear Economic Models; Population Growth; Graphs and Digraphs; Error-Correcting Codes. 4. EIGENVALUES AND EIGENVECTORS. Introduction: A Dynamical System on Graphs. Introduction to Eigenvalues and Eigenvectors. Determinants. Vignette: Lewis Carroll's Condensation Method. Exploration: Geometric Applications of Determinants. Eigenvalues and Eigenvectors of n x n Matrices. Similarity and Diagonalization. Iterative Methods for Computing Eigenvalues. Applications and the Perron-Frobenius Theorem: Markov Chains; Population Growth; The Perron-Frobenius Theorem; Linear Recurrence Relations; Systems of Linear Differential Equations; Discrete Linear Dynamical Systems. Vignette: Ranking Sports Teams and Searching the Internet. 5. ORTHOGONALITY. Introduction: Shadows on a Wall. Orthogonality in Rn. Orthogonal Complements and Orthogonal Projections. The Gram-Schmidt Process and the QR Factorization. Exploration: The Modified QR Factorization. Exploration: Approximating Eigenvalues with the QR Algorithm. Orthogonal Diagonalization of Symmetric Matrices. Applications: Dual Codes; Quadratic Forms; Graphing Quadratic Equations. 6. VECTOR SPACES. Introduction: Fibonacci in (Vector) Space. Vector Spaces and Subspaces. Linear Independence, Basis, and Dimension. Exploration: Magic Squares. Change of Basis. Linear Transformations. The Kernel and Range of a Linear Transformation. The Matrix of a Linear Transformation. Exploration: Tilings, Lattices and the Crystallographic Restriction. Applications: Homogeneous Linear Differential Equations; Linear Codes. 7. DISTANCE AND APPROXIMATION. Introduction: Taxicab Geometry. Inner Product Spaces. Exploration: Vectors and Matrices with Complex Entries. Exploration: Geometric Inequalities and Optimization Problems. Norms and Distance Functions. Least Squares Approximation. The Singular Value Decomposition. Vignette: Digital Image Compression. Applications: Approximation of Functions; Error-Correcting Codes. Appendix A: Mathematical Notation and Methods of Proof. Appendix B: Mathematical Induction. Appendix C: Complex Numbers. Appendix D: Polynomials.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews