Linear and Integer Programming vs Linear Integration and Counting: A Duality Viewpoint / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $27.08
Usually ships in 1-2 business days
(Save 75%)
Other sellers (Hardcover)
  • All (8) from $27.08   
  • New (4) from $45.20   
  • Used (4) from $27.08   


In this book the author analyzes and compares four closely related problems, namely linear programming, integer programming, linear integration, linear summation (or counting). The focus is on duality and the approach is novel as it puts integer programming in perspective with three associated problems, and permits one to define discrete analogues of well-known continuous duality concepts, and the rationale behind them. Also, the approach highlights the difference between the discrete and continuous cases. Central in the analysis are the continuous and discrete Brion and Vergne's formulae for linear integration and counting which are not very well-known in the optimization community. This approach provides some new insights on duality concepts for integer programs, and also permits to retrieve and shed new light on some well-known results. For instance, Gomory relaxations and the abstract superadditive dual of integer programs are re-interpreted in this algebraic approach.

This book will serve graduate students and researchers in applied mathematics, optimization, operations research and computer science. Due to the substantial practical importance of some presented problems, researchers in other areas will also find this book useful.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

“Lasserre has produced a fascinating slim … monograph (much of the work his own) looking at the parallels between linear (respectively integer) programming on the one hand and integration (respectively integer counting) problems on the other hand. … An appendix on various transforms a hundred references and a brief index complete the work which is a welcome addition to an important set of topics.” (J. Borwein, Mathematical Reviews, Issue 2010 f)

“This book is devoted to analysing four important problems: integer programming problem, linear programming problem, linear integration problem, and linear counting problem. … a very specialized book on the integer programming problem and its dual variants. … can be very helpful for researchers working in developing algorithms for the integer programming problem which is a formidable challenging problem. This is a clear and well-written book … .” (E. Almehdawe, Journal of the Operational Research Society, Vol. 61 (12), 2010)

Read More Show Less

Product Details

Table of Contents

Preface. Introduction.- Part I. Linear Integration and Linear Programming. The Linear Integration Problem I. Comparing the Continuous Problems P and I.- Part II. Linear Counting and Integer Programming- The Linear Counting Problem I(d). Relating the Discrete Problems P(d) and I(d) with P.- Part III. Duality. Duality and Gomory Relaxations. Barvinok’s Counting Algorithm and Gomory Relaxations. A Discrete Farkas Lemma. The Integer Hull of a Convex Rational Polytope. Duality and Superadditive Functions.- Appendix: Legendre-Fenchel, Laplace, Cramer, and Z Transforms. References. Glossary.- Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)