Linker Strategies in Solid-Phase Organic Synthesis / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $189.46
Usually ships in 1-2 business days
(Save 22%)
Other sellers (Hardcover)
  • All (7) from $189.46   
  • New (5) from $189.46   
  • Used (2) from $233.27   


Linker design is an expanding field with an exciting future in state-of-the-art organic synthesis. Ever-increasing numbers of ambitious solution phase reactions are being adapted for solid-phase organic chemistry and to accommodate them, large numbers of sophisticated linker units have been developed and are now routinely employed in solid-phase synthesis.

Linker Strategies in Solid-Phase Organic Synthesis guides the reader through the evolution of linker units from their genesis in solid-supported peptide chemistry to the cutting edge diversity linker units that are defining a new era of solid phase synthesis.  Individual linker classes are covered in easy to follow chapters written by international experts in their respective fields and offer a comprehensive guide to linker technology whilst simultaneously serving as a handbook of synthetic transformations now possible on solid supports. Topics include:

  • the principles of solid phase organic synthesis
  • electrophile and nucleophile cleavable linker units
  • cyclative cleavage as a solid phase strategy
  • photocleavable linker units
  • safety-catch linker units
  • enzyme cleavable linker units
  • T1 and T2 –versatile triazene linker groups
  • hydrazone linker units
  • benzotriazole linker units
  • phosphorus linker units
  • sulfur linker units
  • selenium and tellurium linker units
  • sulfur, oxygen and selenium linker units cleaved by radical processes
  • silicon and germanium linker units
  • boron and stannane linker units
  • bismuth linker units
  • transition metal carbonyl linker units
  • linkers releasing olefins or cycloolefins by ring-closing metathesis
  • fluorous linker units
  • solid-phase radiochemistry

The book concludes with extensive linker selection tables, cataloguing the linker units described in this book according to the substrate liberated upon cleavage and conditions used to achieve such cleavage, enabling readers to choose the right linker unit for their synthesis.

Linker Strategies in Solid-Phase Organic Synthesis is an essential guide to the diversity of linker units for organic chemists in academia and industry working in the broad areas of solid-phase organic synthesis and diversity oriented synthesis, medicinal chemists in the pharmaceutical industry who routinely employ solid-phase chemistry in the drug discovery business, and advanced undergraduates, postgraduates, and organic chemists with an interest in leading-edge developments in their field.

Read More Show Less

Editorial Reviews

From the Publisher
"It is without a doubt an invaluable addition to any university or corporate library serving organic and biochemical researchers." (CHOICE, September 2010)

"This book is a useful complement to literature reviews as well as other SPOS books. It will be a valuable resource for university libraries and an excellent first source for practitioners of solid-phase organic synthesis." (JACS, 2010)

Read More Show Less

Product Details

  • ISBN-13: 9780470511169
  • Publisher: Wiley
  • Publication date: 12/22/2009
  • Edition number: 1
  • Pages: 706
  • Product dimensions: 7.70 (w) x 9.90 (h) x 1.70 (d)

Table of Contents



List of Contributors.

About the Editor.



Chapter 1: General Introduction (Scott L. Dax).

1.1 Introduction, Background and Pivotal Discoveries.

1.2 Fundamentals of Conducting Solid-Phase Organic Chemistry.

1.3 Concluding Comments.

1.4 Personal Perspective and Testimony: Solid-phase Mannich Chemistry.

1.5 References.


Chapter 2: Electrophile Cleavable Linker Units (Michio Kuruso).

2.1 Introduction.

2.2 Resins for use with Electrophilic Linkers.

2.3 Electrophile Cleavable Linkers.

2.4 Conclusion.


Chapter 3: Nucleophile Cleavable Linker Units (Andrea Porcheddu and Giampaolo Giacomelli).

3.1 Introduction.

3.2 Linker Units.

3.3 Nucleophilic Labile Linker Units.

3.4 Conclusion.


Chapter 4: Cyclative Cleavage as a Solid-Phase Strategy (A. Ganesan).

4.1 Introduction.

4.2 C-N bond formation.

4.3 C-O bond formation.

4.4 C-C bond formation.

4.5 Conclusion.


Chapter 5: Photolabile Linker Units (Christian Bochet and Sébastien Mercier).

5.1 Introduction.

5.2 Linkers Based on the Ortho-Nitrobenzyloxy Function.

5.3 Linkers Based on the Ortho-Nitrobenzylamino Function.

5.4 Linkers Based on the α–Substituted Ortho-Nitrobenzyl Group.

5.5 Linkers Based on the Ortho-Nitroveratryl Group.

5.6 Linkers Based on the Phenacyl Group.

5.7 Linkers Based on the Para-Methoxyphenacyl Group.

5.8 Linkers Based on the Benzoin Group.

5.9 Linkers Based on the Pivaloyl Group.

5.10 Traceless Linkers.

5.11 Other Types of Photolabile Linker Units.

5.12 Conclusion.


Chapter 6: Safety-Catch Linker Units (Sylvain Lebreton and Marcel Pátek).

6.1 Introduction.

6.2 Activation of a carbonyl group by the inductive effect (I-) of an adjacent substituent.

6.3 Activation by the mesomeric effect (M-) of the X–Y=Z moiety adjacent to a carbonyl group.

6.4 Activation by the positive mesomeric effect (M+) of the -X-Y=Z moiety adjacent to a N-acyl or O-alkyl group.

6.5 Aromatic SNAr substitution.

6.6 Fragmentation by β-elimination.

6.7 Safety-catch linker for release in aqueous buffers.

6.8 Photochemical activation.

6.9 Miscellaneous safety-catch linkers.

6.10 Conclusion.

6.11 References.

Chapter 7: Enzyme Cleavable Linker Units (Mallesham Bejugam and Sabine L. Flitsch).

7.1 Introduction.

7.2 Enzyme Cleavable Linker Units.

7.3 Conclusion.



Chapter 8: An Introduction to Diversity-Oriented Synthesis (Richard J. Spandl, Gemma L. Thomas, Monica Diaz-Gavilan, Kieron M. G. O'Connell and David R. Spring).

8.1 Introduction.

8.2 Exploring Chemical Space.

8.3 Sources of Skeletally Diverse Small Molecules.

8.4 Enriching Chemical Space Using DOS.

8.5 The Subjective Nature of ‘Diversity’.

8.6 Differing Strategies Towards Similar Goals.

8.7 Generating Skeletal Diversity.

8.8 DOS and Solid-Phase Organic Synthesis.

8.9 Conclusion.


Chapter 9: T1 and T2 – Versatile Triazene Linker Groups (Kerstin Knepper and Robert E. Ziegert).

9.1 Introduction.

9.2 The T1 Linker.

9.3 The T2 Linker Units.

9.4 Miscellaneous Triazene Linkers.

9.5 Conclusion.

9.6 References.

Chapter 10: Hydrazone Linker Units (Ryszard Lazny).

10.1 Introduction.

10.2 Hydrazone Linker Units.

10.3 Conclusion.


Chapter 11: Benzotriazole Linker Units (Daniel K. Whelligan).

11.1 Introduction.

11.2 Syntheses of Polymer-Supported Benzotriazoles.

11.3 Polymer-Supported Benzotriazole Linked Reactions.


Chapter 12: Diversity Cleavage Strategies from Phosphorus Linkers (Patrick G. Steel and Tom M. Woods).

12.1 Introduction.

12.2 Diversity Cleavage through olefination reactions.

12.3 Diversity cleavage of enol phosphonates through palladium catalysed cross-coupling reactions.

12.4 Oxidative diversity cleavage of cyanophosphoranes.


Chapter 13: Sulfur Linker Units (Peter J. H. Scott).

13.1 Introduction.

13.2 Sulfide Linker Units.

13.3 Sulfonium Linker Units.

13.4 Sulfoxide Linker Units.

13.5 Sulfone Linker Units.

13.6 Sulfonate Ester Linker Units.

13.7 Sulfamate Linker Units.

13.8 Thioester Linker Units.

13.9 Conclusions.


Chapter 14: Selenium- and Tellurium-Based Linker Units (Tracy Yuen Sze But and Patrick H. Toy).

14.1 Introduction.

14.2 Selenium- and Tellurium-Based Linker Group Reagents and Their Syntheses.

14.3 Selenium-Based Linker Group Attachment Methods.

14.4 Selenium-Based Linker Group Cleavage Methods.

14.5 Conclusions.


Chapter 15: Linker Units Cleaved by Radical Processes: Cleavage of Carbon-Sulfur, -Selenium, -Tellurium, -Oxygen, -Nitrogen and -Carbon Linkers (Giuditta Guazzelli, Marc Miller and David J. Procter).

15.1 Introduction.

15.2 Linkers cleaved using tin hydride, alkyltin and silicon hydride reagents.

15.3 Linkers cleaved by oxidative electron-transfer.

15.4 Linkers cleaved by reductive electron-transfer.

15.5 Radical processes that indirectly trigger linker cleavage.

15.6 Conclusions.


Chapter 16: Silicon and Germanium Linker Units (Alan C. Spivey and Christopher M. Diaper).


16.2 Silicon-based Linkers.

16.3 Germanium-based Linkers.

16.4 Conclusions.


Chapter 17: Boron and Stannane Linker Units (Peter J.H. Scott).

17.1 Introduction.

17.2 Organostannane Linker Units.

17.3 Organoboron Linker Units.

17.4 Conclusion.


Chapter 18: Bismuth Linker Units (Peter J.H Scott).

18.1 Introduction.

18.2 Bismuth Linker Units.

18.3 Conclusion.


Chapter 19: Transition Metal Carbonyl Linker Units (Susan E. Gibson and Amol A. Walke).

19.1 Introduction.

19.2 Chromium carbonyl linker units.

19.3 Cobalt carbonyl linker units.

19.4 Manganese carbonyl linker units.

19.5 Conclusion.


Chapter 20: Linkers Releasing Olefins or Cycloolefins by Ring Closing Metathesis (Jan H. van Maarseveen).

20.1 Introduction.

20.2 Cycloolefins via method I.

20.3 Terminal olefins via route II.

20.4 Terminal and internal olefins via route III.

20.5 Conclusion.



Chapter 21: Fluorous Linker Units (Wei Zhang).

21.1 Introduction.

21.2 Fluorous linkers for synthesis of small molecules.

21.3 Fluorous linkers for synthesis of biomolecules.

21.4 Other applications of fluorous linkers.

21.5 Conclusion.


Chapter 22: Solid-Phase Radiochemistry (Brian G. Hockley, Peter J. H. Scott and Michael R. Kilbourn).

22.1 Introduction.

22.2 Solid-Phase Surrogates in Radiochemistry.

22.3 Solid-Phase Radiochemistry.

22.4 Conclusions and Perspectives.



Chapter 23: Linker Selection Tables (Peter J.H. Scott).

23.1 Introduction.

23.2 Linkers for Alcohols, Phenols and Diols.

23.3 Linkers for Carboxylic Acids, Esters and Related Compounds.

23.4 Linkers for Aldehydes, Ketones and Related Carbonyl Compounds.

23.5 Linkers for Amides, Ureas and Related Compounds.

23.6 Linkers for Amines.

23.7 Linkers Thiols, Thioethers and Disulfides.

23.8 Linkers for Sugars.

23.9 Linkers Liberating Alkyl Groups.

23.10 Linkers for Alkenes, Alkynes and Related Compounds.

23.11 Linkers for Aryl Compounds.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)