Local Minimization, Variational Evolution and ?-Convergence

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.

1117379862
Local Minimization, Variational Evolution and ?-Convergence

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.

49.99 In Stock
Local Minimization, Variational Evolution and ?-Convergence

Local Minimization, Variational Evolution and ?-Convergence

by Andrea Braides
Local Minimization, Variational Evolution and ?-Convergence

Local Minimization, Variational Evolution and ?-Convergence

by Andrea Braides

eBook2014 (2014)

$49.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.


Product Details

ISBN-13: 9783319019826
Publisher: Springer International Publishing
Publication date: 07/08/2014
Series: Lecture Notes in Mathematics , #2094
Sold by: Barnes & Noble
Format: eBook
File size: 4 MB

Table of Contents

Introduction.- Global minimization.- Parameterized motion driven by global minimization.- Local minimization as a selection criterion.- Convergence of local minimizers.- Small-scale stability.- Minimizing movements.- Minimizing movements along a sequence of functionals.- Geometric minimizing movements.- Different time scales.- Stability theorems.- Index.

From the B&N Reads Blog

Customer Reviews